• Previous Article
    Constructing 1-resilient rotation symmetric functions over $ {\mathbb F}_{p} $ with $ {q} $ variables through special orthogonal arrays
  • AMC Home
  • This Issue
  • Next Article
    Efficient traceable ring signature scheme without pairings
May  2020, 14(2): 233-245. doi: 10.3934/amc.2020017

Cyclic codes of length $ 2p^n $ over finite chain rings

1. 

Departamento de Matemática, Universidade Federal de Viçosa, Viçosa, 36570-000, Brazil

2. 

Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 05311-970, Brazil

Received  February 2018 Revised  March 2019 Published  September 2019

Fund Project: This work was partially supported by CNPq., Proc. 300243/79-0(RN) and FAPESP, Proc 2015/09162-9

We use group algebra methods to study cyclic codes over finite chain rings and under some restrictive hypotheses, described in section 2, for codes of length $ 2p^n $, $ p $ a prime, we are able to compute the minimum weights of all possible cyclic codes of that length.

Citation: Anderson Silva, C. Polcino Milies. Cyclic codes of length $ 2p^n $ over finite chain rings. Advances in Mathematics of Communications, 2020, 14 (2) : 233-245. doi: 10.3934/amc.2020017
References:
[1]

S. K. Arora and M. Pruthi, Minimal cyclic codes of length $2p^n$, Finite Fields Appl., 5 (1999), 177-187.  doi: 10.1006/ffta.1998.0238.  Google Scholar

[2]

Y. L. Cao, On constacyclic codes over finite chain rings, Finite Fields Appl., 24 (2013), 124-135.  doi: 10.1016/j.ffa.2013.07.001.  Google Scholar

[3]

H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Transactions on Information Theory, 50 (2004), 1728-1744.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[4]

S. T. DoughertyJ.-L. Kim and H. W. Liu, Construction of self-dual codes over finite commutative chain rings, Int. Journal on Information and Coding Theory, 1 (2010), 171-190.  doi: 10.1504/IJICOT.2010.032133.  Google Scholar

[5]

R. A. Ferraz and C. Polcino Milies, Idempotents in group algebras and minimal abelian codes, Finite Fields and Their Appl., 13 (2007), 382-393.  doi: 10.1016/j.ffa.2005.09.007.  Google Scholar

[6]

N. Jacobson, Basic Algebra. II, W. H. Freeman and Company, San Francisco, Calif., 1980.  Google Scholar

[7]

Z. H. Liu, Notes on linear codes over finite chain rings, Acta Mathematicae Applicatae Sinica, 27 (2011), 141-148.  doi: 10.1007/s10255-011-0047-0.  Google Scholar

[8]

E. Martinez-Moro and I. F. Rúa, On repeated-root multivariable codes over a finite chain ring, Designs, Codes Cryptography, 45 (2007), 219-227.  doi: 10.1007/s10623-007-9114-1.  Google Scholar

[9]

G. H. Norton and A. Sălăgean-Mandache, On the structure of linear cyclic codes over finite chain rings, Appl. Algebra Eng. Commun. Comput., 10 (2000), 489-506.  doi: 10.1007/PL00012382.  Google Scholar

[10]

C. Polcino Milies and S. K. Sehgal, An Introduction to Group Rings, Algebra and Applications, 1. Kluwer Academic Publishers, Dordrecht, 2002. doi: 10.1007/978-94-010-0405-3.  Google Scholar

[11]

P. Solé and V. Sison, Bounds on the minimum homogeneous dis-tance of the $p^r$-ary image of linear block codes over the galois ring $GR(p^r, m)$, IEEE Trans. Information Theory, 53 (2007), 2270-2273.  doi: 10.1109/TIT.2007.896891.  Google Scholar

show all references

References:
[1]

S. K. Arora and M. Pruthi, Minimal cyclic codes of length $2p^n$, Finite Fields Appl., 5 (1999), 177-187.  doi: 10.1006/ffta.1998.0238.  Google Scholar

[2]

Y. L. Cao, On constacyclic codes over finite chain rings, Finite Fields Appl., 24 (2013), 124-135.  doi: 10.1016/j.ffa.2013.07.001.  Google Scholar

[3]

H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Transactions on Information Theory, 50 (2004), 1728-1744.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[4]

S. T. DoughertyJ.-L. Kim and H. W. Liu, Construction of self-dual codes over finite commutative chain rings, Int. Journal on Information and Coding Theory, 1 (2010), 171-190.  doi: 10.1504/IJICOT.2010.032133.  Google Scholar

[5]

R. A. Ferraz and C. Polcino Milies, Idempotents in group algebras and minimal abelian codes, Finite Fields and Their Appl., 13 (2007), 382-393.  doi: 10.1016/j.ffa.2005.09.007.  Google Scholar

[6]

N. Jacobson, Basic Algebra. II, W. H. Freeman and Company, San Francisco, Calif., 1980.  Google Scholar

[7]

Z. H. Liu, Notes on linear codes over finite chain rings, Acta Mathematicae Applicatae Sinica, 27 (2011), 141-148.  doi: 10.1007/s10255-011-0047-0.  Google Scholar

[8]

E. Martinez-Moro and I. F. Rúa, On repeated-root multivariable codes over a finite chain ring, Designs, Codes Cryptography, 45 (2007), 219-227.  doi: 10.1007/s10623-007-9114-1.  Google Scholar

[9]

G. H. Norton and A. Sălăgean-Mandache, On the structure of linear cyclic codes over finite chain rings, Appl. Algebra Eng. Commun. Comput., 10 (2000), 489-506.  doi: 10.1007/PL00012382.  Google Scholar

[10]

C. Polcino Milies and S. K. Sehgal, An Introduction to Group Rings, Algebra and Applications, 1. Kluwer Academic Publishers, Dordrecht, 2002. doi: 10.1007/978-94-010-0405-3.  Google Scholar

[11]

P. Solé and V. Sison, Bounds on the minimum homogeneous dis-tance of the $p^r$-ary image of linear block codes over the galois ring $GR(p^r, m)$, IEEE Trans. Information Theory, 53 (2007), 2270-2273.  doi: 10.1109/TIT.2007.896891.  Google Scholar

[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[3]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[4]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (286)
  • HTML views (440)
  • Cited by (0)

Other articles
by authors

[Back to Top]