[1]
|
E. Ballico and C. Marcolla, Higher Hamming weights for locally recoverable codes on algebraic curves, Finite Fields and Their Applications, 40 (2016), 61-72.
doi: 10.1016/j.ffa.2016.03.004.
|
[2]
|
A. Barg, I. Tamo and S. Vlǎduţ, Locally recoverable codes on algebraic curves, IEEE Trans. Inform. Theory, 63 (2015), 4928-4939.
doi: 10.1109/TIT.2017.2700859.
|
[3]
|
D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms, Undergraduate Texts in Mathematics, Springer, New York, 1992.
doi: 10.1007/978-1-4757-2181-2.
|
[4]
|
P. Gopalan, C. Huang, H. Simitci and S. Yekhanin, On the locality of codeword symbols, IEEE Transactions on Information Theory, 58 (2012), 6925-6934.
doi: 10.1109/TIT.2012.2208937.
|
[5]
|
K. Haymaker, B. Malmskog and G. L. Matthews, Locally recoverable codes with availability $t\geq 2$ from fiber products of curves, Advances in Mathematics of Communications, 12 (2018), 317-336.
doi: 10.3934/amc.2018020.
|
[6]
|
J. W. P. Hirschfeld, G. Korchmáros and F. Torres, Algebraic Curves Over a Finite Field, Princeton University Press, Princeton, NJ, 2008.
|
[7]
|
S. Kondo, T. Katagiri and T. Ogihara, Automorphism groups of one-point codes from the curves $y^{q}+y = x^{q^r+1}$, IEEE Transactions on Information Theory, 47 (2001), 2573-2579.
doi: 10.1109/18.945272.
|
[8]
|
O. Kolosov, A. Barg, I. Tamo and G. Yadgar, Optimal LRC codes for all lengths $n\leq q$, preprint, (2018), arXiv: 1802.00157.
|
[9]
|
R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983.
|
[10]
|
S. Miura, Algebraic geometric codes on certain plane curves, IEICE Transactions on Fundamentals, 75 (1992), 1735-1745.
doi: 10.1002/ecjc.4430761201.
|
[11]
|
C. Munuera and W. Olaya-León, An introduction to algebraic geometry codes, in Algebra for Secure and Reliable Communication Modelling, AMS-Contemporary Mathematics, Providence, RI, 642 (2015), 87–117.
doi: 10.1090/conm/642/12882.
|
[12]
|
C. Munuera, A. Sepúlveda and F. Torres, Castle curves and codes, Advances in Mathematics of Communications, 3 (2009), 399-408.
doi: 10.3934/amc.2009.3.399.
|
[13]
|
C. Munuera and W. Tenório, Locally Recoverable codes from rational maps, Finite Fields and Their Applications, 54 (2018), 80-100.
doi: 10.1016/j.ffa.2018.07.005.
|
[14]
|
R. Pellikaan, X. W. Wu, S. Bulygin and R. Jurrius, Codes, Cryptology and Curves with Computer Algebra, Cambridge University Press, Cambridge, 2017.
|
[15]
|
A. Sepulveda and G. Tizziotti, Weierstrass semigroups and codes over the curve $y^{q}+y = x^{q^r+1}$, Advances in Mathematics of Communications, 8 (2014), 67-72.
doi: 10.3934/amc.2014.8.67.
|
[16]
|
H. Stichtenoth, Algebraic Function Fields and Codes, Graduate Texts in Mathematics, 254. Springer-Verlag, Berlin, 2009.
|
[17]
|
I. Tamo and A. Barg, A family of optimal locally recoverable codes, IEEE Transactions on Information Theory, 60 (2014), 4661-4676.
doi: 10.1109/TIT.2014.2321280.
|
[18]
|
V. K. Wei, Generalized Hamming weights for linear codes, IEEE Transactions on Information Theory, 37 (1991), 1412-1418.
doi: 10.1109/18.133259.
|