-
Previous Article
Algebraic dependence in generating functions and expansion complexity
- AMC Home
- This Issue
-
Next Article
Multi-point codes from the GGS curves
Dual-Ouroboros: An improvement of the McNie scheme
1. | University of Limoges, Limoges, France |
2. | Sogang University, Seoul, South Korea |
3. | Chosun University, Gwangju, South Korea |
McNie [
References:
[1] |
C. Aguilar Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J. C. Deneuville, P. Gaborit, A. Hauteville and G. Zémor, Ouroboros-R, http://pqc-ouroborosr.org/. |
[2] |
N. Aragon, P. Gaborit, A. Hauteville and J. P. Tillich, Improvement of the generic attacks for the rank syndrome decoding problem, 2017, < hal-01608464>. |
[3] |
L. Both and A. May, Decoding linear codes with high error rate and its impact for LPN security, in Post-Quantum Cryptography, PQCrypto 2018, (eds. T. Lange and R. Steinwandt), Lecture Notes in Computer Science, Springer, Cham., 10786 (2018), 25–46. |
[4] |
J.-C. Deneuville, P. Gaborit and G. Zémor, Ouroboros: A simple, secure and efficient key exchange protocol based on coding theory, International Workshop on Post-Quantum Cryptography, Springer, Cham, 10346 (2017), 18–34. |
[5] |
P. Gaborit, G. Murat, O. Ruatta and G. Zémor, Low rank parity check codes and their application to cryptography, In Proceedings of the Workshop on Coding and Cryptography WCC'2013, Bergen, Norway, 2013. |
[6] |
P. Gaborit, A. Hauteville, D. H. Phan and J.-P. Tillich, Identity-based encryption from rank metric, Advances in Cryptology—CRYPTO 2017. Part Ⅲ, Lecture Notes in Computer Science, Springer, 10403 (2017), 194–224. |
[7] |
Gaborit, Oficial comments on McNie, 2017, https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions. |
[8] |
L. Galvez, J.-L. Kim, M. J. Kim, Y.-S. Kim and N. Lee, McNie, 2017, https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions. |
[9] |
R. J. McEliece,
A public key cryptosystem based on algebraic coding theory, DSN Progress Report, 42/44 (1978), 114-116.
|
[10] |
Post-Quantum-Cryptography-Standardization, https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization. |
show all references
References:
[1] |
C. Aguilar Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J. C. Deneuville, P. Gaborit, A. Hauteville and G. Zémor, Ouroboros-R, http://pqc-ouroborosr.org/. |
[2] |
N. Aragon, P. Gaborit, A. Hauteville and J. P. Tillich, Improvement of the generic attacks for the rank syndrome decoding problem, 2017, < hal-01608464>. |
[3] |
L. Both and A. May, Decoding linear codes with high error rate and its impact for LPN security, in Post-Quantum Cryptography, PQCrypto 2018, (eds. T. Lange and R. Steinwandt), Lecture Notes in Computer Science, Springer, Cham., 10786 (2018), 25–46. |
[4] |
J.-C. Deneuville, P. Gaborit and G. Zémor, Ouroboros: A simple, secure and efficient key exchange protocol based on coding theory, International Workshop on Post-Quantum Cryptography, Springer, Cham, 10346 (2017), 18–34. |
[5] |
P. Gaborit, G. Murat, O. Ruatta and G. Zémor, Low rank parity check codes and their application to cryptography, In Proceedings of the Workshop on Coding and Cryptography WCC'2013, Bergen, Norway, 2013. |
[6] |
P. Gaborit, A. Hauteville, D. H. Phan and J.-P. Tillich, Identity-based encryption from rank metric, Advances in Cryptology—CRYPTO 2017. Part Ⅲ, Lecture Notes in Computer Science, Springer, 10403 (2017), 194–224. |
[7] |
Gaborit, Oficial comments on McNie, 2017, https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions. |
[8] |
L. Galvez, J.-L. Kim, M. J. Kim, Y.-S. Kim and N. Lee, McNie, 2017, https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions. |
[9] |
R. J. McEliece,
A public key cryptosystem based on algebraic coding theory, DSN Progress Report, 42/44 (1978), 114-116.
|
[10] |
Post-Quantum-Cryptography-Standardization, https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization. |
Failure | PK | SK | CT | Security | |||||||
94 | 47 | 47 | 2 | 67 | 5 | 7 | -28 | 788 | 1181 | 1181 | 128 |
142 | 71 | 71 | 2 | 91 | 5 | 6 | -54 | 1616 | 2423 | 2423 | 128 |
194 | 97 | 97 | 2 | 91 | 5 | 7 | -78 | 2207 | 3311 | 3311 | 128 |
106 | 53 | 53 | 2 | 101 | 5 | 8 | -30 | 1339 | 2008 | 2008 | 192 |
158 | 79 | 79 | 2 | 101 | 5 | 8 | -58 | 1995 | 2993 | 2993 | 192 |
194 | 97 | 97 | 2 | 101 | 5 | 8 | -76 | 2450 | 3674 | 3674 | 192 |
134 | 67 | 67 | 2 | 107 | 6 | 9 | -30 | 1793 | 2689 | 2689 | 256 |
158 | 79 | 79 | 2 | 131 | 6 | 8 | -56 | 2588 | 3881 | 3881 | 256 |
202 | 101 | 101 | 2 | 131 | 6 | 8 | -78 | 3308 | 4962 | 4962 | 256 |
Failure | PK | SK | CT | Security | |||||||
94 | 47 | 47 | 2 | 67 | 5 | 7 | -28 | 788 | 1181 | 1181 | 128 |
142 | 71 | 71 | 2 | 91 | 5 | 6 | -54 | 1616 | 2423 | 2423 | 128 |
194 | 97 | 97 | 2 | 91 | 5 | 7 | -78 | 2207 | 3311 | 3311 | 128 |
106 | 53 | 53 | 2 | 101 | 5 | 8 | -30 | 1339 | 2008 | 2008 | 192 |
158 | 79 | 79 | 2 | 101 | 5 | 8 | -58 | 1995 | 2993 | 2993 | 192 |
194 | 97 | 97 | 2 | 101 | 5 | 8 | -76 | 2450 | 3674 | 3674 | 192 |
134 | 67 | 67 | 2 | 107 | 6 | 9 | -30 | 1793 | 2689 | 2689 | 256 |
158 | 79 | 79 | 2 | 131 | 6 | 8 | -56 | 2588 | 3881 | 3881 | 256 |
202 | 101 | 101 | 2 | 131 | 6 | 8 | -78 | 3308 | 4962 | 4962 | 256 |
[1] |
Jintai Ding, Sihem Mesnager, Lih-Chung Wang. Letters for post-quantum cryptography standard evaluation. Advances in Mathematics of Communications, 2020, 14 (1) : i-i. doi: 10.3934/amc.2020012 |
[2] |
Gerhard Frey. Relations between arithmetic geometry and public key cryptography. Advances in Mathematics of Communications, 2010, 4 (2) : 281-305. doi: 10.3934/amc.2010.4.281 |
[3] |
Gérard Maze, Chris Monico, Joachim Rosenthal. Public key cryptography based on semigroup actions. Advances in Mathematics of Communications, 2007, 1 (4) : 489-507. doi: 10.3934/amc.2007.1.489 |
[4] |
Yu-Chi Chen. Security analysis of public key encryption with filtered equality test. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021053 |
[5] |
Javier de la Cruz, Ricardo Villanueva-Polanco. Public key cryptography based on twisted dihedral group algebras. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022031 |
[6] |
Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046 |
[7] |
Ramprasad Sarkar, Mriganka Mandal, Sourav Mukhopadhyay. Quantum-safe identity-based broadcast encryption with provable security from multivariate cryptography. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022026 |
[8] |
Felipe Cabarcas, Daniel Cabarcas, John Baena. Efficient public-key operation in multivariate schemes. Advances in Mathematics of Communications, 2019, 13 (2) : 343-371. doi: 10.3934/amc.2019023 |
[9] |
Joan-Josep Climent, Juan Antonio López-Ramos. Public key protocols over the ring $E_{p}^{(m)}$. Advances in Mathematics of Communications, 2016, 10 (4) : 861-870. doi: 10.3934/amc.2016046 |
[10] |
Lidong Chen, Dustin Moody. New mission and opportunity for mathematics researchers: Cryptography in the quantum era. Advances in Mathematics of Communications, 2020, 14 (1) : 161-169. doi: 10.3934/amc.2020013 |
[11] |
Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 2010, 4 (2) : 215-235. doi: 10.3934/amc.2010.4.215 |
[12] |
Carla Mascia, Massimiliano Sala, Irene Villa. A survey on functional encryption. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021049 |
[13] |
Rod Cross, Hugh McNamara, Leonid Kalachev, Alexei Pokrovskii. Hysteresis and post Walrasian economics. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 377-401. doi: 10.3934/dcdsb.2013.18.377 |
[14] |
Angsuman Das, Avishek Adhikari, Kouichi Sakurai. Plaintext checkable encryption with designated checker. Advances in Mathematics of Communications, 2015, 9 (1) : 37-53. doi: 10.3934/amc.2015.9.37 |
[15] |
Florian Luca, Igor E. Shparlinski. On finite fields for pairing based cryptography. Advances in Mathematics of Communications, 2007, 1 (3) : 281-286. doi: 10.3934/amc.2007.1.281 |
[16] |
Debrup Chakraborty, Sebati Ghosh, Cuauhtemoc Mancillas López, Palash Sarkar. ${\sf {FAST}}$: Disk encryption and beyond. Advances in Mathematics of Communications, 2022, 16 (1) : 185-230. doi: 10.3934/amc.2020108 |
[17] |
Christoph Hauert, Nina Haiden, Karl Sigmund. The dynamics of public goods. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 575-587. doi: 10.3934/dcdsb.2004.4.575 |
[18] |
Yvo Desmedt, Niels Duif, Henk van Tilborg, Huaxiong Wang. Bounds and constructions for key distribution schemes. Advances in Mathematics of Communications, 2009, 3 (3) : 273-293. doi: 10.3934/amc.2009.3.273 |
[19] |
Giacomo Micheli. Cryptanalysis of a noncommutative key exchange protocol. Advances in Mathematics of Communications, 2015, 9 (2) : 247-253. doi: 10.3934/amc.2015.9.247 |
[20] |
Ernan Haruvy, Ashutosh Prasad, Suresh Sethi, Rong Zhang. Competition with open source as a public good. Journal of Industrial and Management Optimization, 2008, 4 (1) : 199-211. doi: 10.3934/jimo.2008.4.199 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]