doi: 10.3934/amc.2020023

Quaternary group ring codes: Ranks, kernels and self-dual codes

1. 

Department of Mathematics, University of Scranton, Scranton, PA 18510, USA

2. 

Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain

3. 

Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ 86001, USA

Received  July 2018 Published  September 2019

Fund Project: This work has been partially supported by the Spanish MINECO under Grant TIN2016-77918-P (AEI/FEDER, UE)

We study $ G $-codes over the ring $ {\mathbb{Z}}_4 $, which are codes that are held invariant by the action of an arbitrary group $ G $. We view these codes as ideals in a group ring and we study the rank and kernel of these codes. We use the rank and kernel to study the image of these codes under the Gray map. We study the specific case when the group is the dihedral group and the dicyclic group. Finally, we study quaternary self-dual dihedral and dicyclic codes, tabulating the many good self-dual quaternary codes obtained via these constructions, including the octacode.

Citation: Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2020023
References:
[1]

E. BannaiS. T. DoughertyM. Harada and M. Oura, Type Ⅱ codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory, 45 (1999), 1194-1205.  doi: 10.1109/18.761269.  Google Scholar

[2]

W. Bosma, J. J. Cannon and C. Fieker, A. Steel: Handbook of Magma functions, Edition 2.22 5669 pages, 2016, http://magma.maths.usyd.edu.au/magma/. Google Scholar

[3]

J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo $4$, J. Combin. Theory Ser. A, 62 (1993), 30-45.  doi: 10.1016/0097-3165(93)90070-O.  Google Scholar

[4]

S. T. Dougherty, Algebraic Coding Theory over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-59806-2.  Google Scholar

[5]

S. T. Dougherty and C. Fernández-Córdoba, Codes over $\Bbb Z_{2^k}$, Gray maps and self-dual codes, Adv. in Math. of Commun., 5 (2011), 571-588.  doi: 10.3934/amc.2011.5.571.  Google Scholar

[6]

S. T. Dougherty and C. Fernández-Córdoba, Kernels and ranks of cyclic and negacyclic quaternary codes, Des. Codes Cryptogr., 81 (2016), 347-364.  doi: 10.1007/s10623-015-0163-6.  Google Scholar

[7]

S. T. DoughertyC. Fernández-Córdoba and R. Ten-Valls, Quasi-cyclic codes as cyclic codes over a family of local rings, Finite Fields Appl., 40 (2016), 138-149.  doi: 10.1016/j.ffa.2016.04.002.  Google Scholar

[8]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group Rings, $G$-codes and constructions of self-dual and formally self-dual codes, Des. Codes Cryptogr., 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.  Google Scholar

[9]

C. Fernández-CórdobaJ. Pujol and M. Villanueva, On rank and kernel of $ {\mathbb{Z}}_4$-linear codes, Lecture Notes in Computer Science, 5228 (2008), 46-55.   Google Scholar

[10]

R. A. FerrazF. S. Dutra and C. Polcino Milies, Semisimple group codes and dihedral codes, Algebra Discrete Math., (2009), 28-48.   Google Scholar

[11]

J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.  Google Scholar

[12]

M. Guerreiro, Group algebras and coding theory, São Paulo Journal of Mathematical Sciences, 10 (2016), 346-371.  doi: 10.1007/s40863-016-0040-x.  Google Scholar

[13]

A. R. J. HammonsP. V. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $ {\mathbb{Z}}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.  Google Scholar

[14]

T. Hurley, Group rings and rings of matrices, Int. Jour. Pure and Appl. Math., 31 (2006), 319-33.   Google Scholar

[15]

F. J. MacWilliams, Binary codes which are ideals in the group algebra of an Abelian group, Bell System Tech. J., 49 (1970), 987-1011.  doi: 10.1002/j.1538-7305.1970.tb01812.x.  Google Scholar

[16]

J. MacWilliams, Codes and ideals in group algebras, Combinatorial Mathematics and its Applications, Univ. North Carolina Press, Chapel Hill, N.C., (1969), 317–328.  Google Scholar

[17]

O. Ore, Theory of non-commutative polynomials, Annals of Mathematics, 34 (1933), 480-508.  doi: 10.2307/1968173.  Google Scholar

[18]

V. PlessP. Solé and Z. Q. Qian, Cyclic self-dual $ {\mathbb{Z}}_4$-codes, with an appendix by Pieter Moree, Finite Fields Appl., 3 (1997), 48-69.  doi: 10.1006/ffta.1996.0172.  Google Scholar

[19]

V. S. Pless and Z. Q. Qian, Cyclic codes and quadratic residue codes over $ {\mathbb{Z}}_4$, IEEE Trans. Inform. Theory, 42 (1996), 1594-1600.  doi: 10.1109/18.532906.  Google Scholar

[20]

D. J. S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1993.  Google Scholar

show all references

References:
[1]

E. BannaiS. T. DoughertyM. Harada and M. Oura, Type Ⅱ codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory, 45 (1999), 1194-1205.  doi: 10.1109/18.761269.  Google Scholar

[2]

W. Bosma, J. J. Cannon and C. Fieker, A. Steel: Handbook of Magma functions, Edition 2.22 5669 pages, 2016, http://magma.maths.usyd.edu.au/magma/. Google Scholar

[3]

J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo $4$, J. Combin. Theory Ser. A, 62 (1993), 30-45.  doi: 10.1016/0097-3165(93)90070-O.  Google Scholar

[4]

S. T. Dougherty, Algebraic Coding Theory over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-59806-2.  Google Scholar

[5]

S. T. Dougherty and C. Fernández-Córdoba, Codes over $\Bbb Z_{2^k}$, Gray maps and self-dual codes, Adv. in Math. of Commun., 5 (2011), 571-588.  doi: 10.3934/amc.2011.5.571.  Google Scholar

[6]

S. T. Dougherty and C. Fernández-Córdoba, Kernels and ranks of cyclic and negacyclic quaternary codes, Des. Codes Cryptogr., 81 (2016), 347-364.  doi: 10.1007/s10623-015-0163-6.  Google Scholar

[7]

S. T. DoughertyC. Fernández-Córdoba and R. Ten-Valls, Quasi-cyclic codes as cyclic codes over a family of local rings, Finite Fields Appl., 40 (2016), 138-149.  doi: 10.1016/j.ffa.2016.04.002.  Google Scholar

[8]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group Rings, $G$-codes and constructions of self-dual and formally self-dual codes, Des. Codes Cryptogr., 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.  Google Scholar

[9]

C. Fernández-CórdobaJ. Pujol and M. Villanueva, On rank and kernel of $ {\mathbb{Z}}_4$-linear codes, Lecture Notes in Computer Science, 5228 (2008), 46-55.   Google Scholar

[10]

R. A. FerrazF. S. Dutra and C. Polcino Milies, Semisimple group codes and dihedral codes, Algebra Discrete Math., (2009), 28-48.   Google Scholar

[11]

J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.  Google Scholar

[12]

M. Guerreiro, Group algebras and coding theory, São Paulo Journal of Mathematical Sciences, 10 (2016), 346-371.  doi: 10.1007/s40863-016-0040-x.  Google Scholar

[13]

A. R. J. HammonsP. V. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $ {\mathbb{Z}}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.  Google Scholar

[14]

T. Hurley, Group rings and rings of matrices, Int. Jour. Pure and Appl. Math., 31 (2006), 319-33.   Google Scholar

[15]

F. J. MacWilliams, Binary codes which are ideals in the group algebra of an Abelian group, Bell System Tech. J., 49 (1970), 987-1011.  doi: 10.1002/j.1538-7305.1970.tb01812.x.  Google Scholar

[16]

J. MacWilliams, Codes and ideals in group algebras, Combinatorial Mathematics and its Applications, Univ. North Carolina Press, Chapel Hill, N.C., (1969), 317–328.  Google Scholar

[17]

O. Ore, Theory of non-commutative polynomials, Annals of Mathematics, 34 (1933), 480-508.  doi: 10.2307/1968173.  Google Scholar

[18]

V. PlessP. Solé and Z. Q. Qian, Cyclic self-dual $ {\mathbb{Z}}_4$-codes, with an appendix by Pieter Moree, Finite Fields Appl., 3 (1997), 48-69.  doi: 10.1006/ffta.1996.0172.  Google Scholar

[19]

V. S. Pless and Z. Q. Qian, Cyclic codes and quadratic residue codes over $ {\mathbb{Z}}_4$, IEEE Trans. Inform. Theory, 42 (1996), 1594-1600.  doi: 10.1109/18.532906.  Google Scholar

[20]

D. J. S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1993.  Google Scholar

Table 1.  (Extremal) Dihedral Self-dual Codes of length 4
First Row of A First row of B Min Lee Weight Lee Weight Distribution
(1, 1) (1, 3) 4 $ 1+14z^4+z^{8} $
(1, 1) (3, 1) 4 $ 1+14z^4+z^{8} $
(1, 3) (1, 1) 4 $ 1+14z^4+z^{8} $
(1, 3) (3, 3) 4 $ 1+14z^4+z^{8} $
(3, 1) (1, 1) 4 $ 1+14z^4+z^{8} $
(3, 1) (3, 3) 4 $ 1+14z^4+z^{8} $
(1, 3) (1, 3) 4 $ 1+14z^4+z^{8} $
(3, 3) (3, 1) 4 $ 1+14z^4+z^{8} $
First Row of A First row of B Min Lee Weight Lee Weight Distribution
(1, 1) (1, 3) 4 $ 1+14z^4+z^{8} $
(1, 1) (3, 1) 4 $ 1+14z^4+z^{8} $
(1, 3) (1, 1) 4 $ 1+14z^4+z^{8} $
(1, 3) (3, 3) 4 $ 1+14z^4+z^{8} $
(3, 1) (1, 1) 4 $ 1+14z^4+z^{8} $
(3, 1) (3, 3) 4 $ 1+14z^4+z^{8} $
(1, 3) (1, 3) 4 $ 1+14z^4+z^{8} $
(3, 3) (3, 1) 4 $ 1+14z^4+z^{8} $
Table 2.  (Extremal) Dihedral Self-dual Codes of length 8
First Row of $ A $ First row of $ B $ Min Lee Weight Lee Weight Distribution
(0, 0, 2, 2) (1, 1, 3, 1) 4 $ 1+28z^4+198z^{8}+\dots $
(0, 0, 0, 0) (1, 3, 1, 1) 4 $ 1+28z^4+198z^{8}+\dots $
(0, 0, 0, 2) (3, 1, 3, 1) 4 $ 1+12z^4+64z^{6}+102z^8+\dots $
(0, 0, 2, 0) (1, 1, 3, 3) 4 $ 1+12z^4+64z^{6}+102z^8+\dots $
First Row of $ A $ First row of $ B $ Min Lee Weight Lee Weight Distribution
(0, 0, 2, 2) (1, 1, 3, 1) 4 $ 1+28z^4+198z^{8}+\dots $
(0, 0, 0, 0) (1, 3, 1, 1) 4 $ 1+28z^4+198z^{8}+\dots $
(0, 0, 0, 2) (3, 1, 3, 1) 4 $ 1+12z^4+64z^{6}+102z^8+\dots $
(0, 0, 2, 0) (1, 1, 3, 3) 4 $ 1+12z^4+64z^{6}+102z^8+\dots $
Table 3.  Best Dicyclic Self-dual Codes of lengths 4, 8 and 12
$ n $ 1st row of $ A $ 1st row of $ B $ 1st row of $ C $ Min Lee Weight Gray Image Linear
$ 4 $ (1, 3) (3, 3) (3, 3) 4 Yes
$ 8 $ (0, 0, 0, 2) (3, 3, 3, 3) (3, 3, 3, 3) 4 Yes
$ 8 $ (0, 0, 1, 1) (0, 0, 1, 3) (1, 3, 0, 0) 4 No
$ 8 $ (0, 0, 1, 1) (0, 1, 1, 2) (1, 2, 0, 1) $ 6^* $ No
$ 12 $ (0, 0, 0, 0, 0, 0) (0, 1, 3, 0, 1, 1) (0, 1, 1, 0, 1, 3) 4 Yes
$ n $ 1st row of $ A $ 1st row of $ B $ 1st row of $ C $ Min Lee Weight Gray Image Linear
$ 4 $ (1, 3) (3, 3) (3, 3) 4 Yes
$ 8 $ (0, 0, 0, 2) (3, 3, 3, 3) (3, 3, 3, 3) 4 Yes
$ 8 $ (0, 0, 1, 1) (0, 0, 1, 3) (1, 3, 0, 0) 4 No
$ 8 $ (0, 0, 1, 1) (0, 1, 1, 2) (1, 2, 0, 1) $ 6^* $ No
$ 12 $ (0, 0, 0, 0, 0, 0) (0, 1, 3, 0, 1, 1) (0, 1, 1, 0, 1, 3) 4 Yes
[1]

Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002

[2]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[3]

Steven T. Dougherty, Joe Gildea, Adrian Korban, Abidin Kaya. Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020037

[4]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[5]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[6]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[7]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[8]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[9]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[10]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[11]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[12]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[13]

Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415

[14]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[15]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[16]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[17]

Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035

[18]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

[19]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

[20]

Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (35)
  • HTML views (181)
  • Cited by (0)

[Back to Top]