- Previous Article
- AMC Home
- This Issue
-
Next Article
Repeated-root constacyclic codes of length $ 3\ell^mp^s $
Additive Toeplitz codes over $ \mathbb{F}_{4} $
1. | Department of Mathematics, Faculty of Science, Ankara University, Ankara, 06100, Turkey |
2. | Department of Mathematics, Faculty of Arts and Sciences, Nevşehir Hacı Bektaş Veli University, Nevşehir, 50300, Turkey |
In this paper, we introduce additive Toeplitz codes over $ \mathbb{F}_{4} $. The additive Toeplitz codes are a generalization of additive circulant codes over $ \mathbb{F}_{4} $. We find many optimal additive Toeplitz codes (OATC) over $ \mathbb{F}_{4} $. These optimal codes also contain optimal non-circulant codes, so we find new additive codes in this manner. We provide some theorems to partially classify OATC. Then, we give a new algorithm that fully classifies OATC by combining these theorems with Gaborit's algorithm. We classify OATC over $ \mathbb{F}_{4} $ of length up to $ 13 $. We obtain $ 2 $ inequivalent optimal additive toeplitz codes (IOATC) that are non-circulant codes of length $ 5 $, $ 92 $ of length $ 8 $, $ 2068 $ of length $ 9 $, and $ 39 $ of length $ 11 $. Moreover, we improve an idea related to quadratic residue codes to construct optimal and near-optimal additive Toeplitz codes over $ \mathbb{F}_{4} $ of length prime $ p $. We obtain many optimal and near-optimal additive Toeplitz codes for some primes $ p $ from this construction.
References:
[1] |
A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane,
Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
doi: 10.1109/18.681315. |
[2] |
J. Cannon, W. Bosma, C. Fieker and A. Steel, Handbook of Magma Functions, Version 2.19, Sydney, 2013. |
[3] |
L. E. Danielsen and M. G. Parker,
Directed graph representation of half-rate additive codes over GF(4), Des. Codes Cryptogr., 59 (2011), 119-130.
doi: 10.1007/s10623-010-9469-6. |
[4] |
L. E. Danielsen and M. G. Parker,
On the classification of all self-dual additive codes over GF(4) of length up to 12, J. Combin. Theory Ser. A, 113 (2006), 1351-1367.
doi: 10.1016/j.jcta.2005.12.004. |
[5] |
P. Gaborit, W. C. Huffman, J. L. Kim and V. Pless,
On additive GF(4) codes, DIMACS Workshop Codes Assoc. Schemes, DIMACS Ser. Discr. Math. Theoret. Comp. Sci., Amer. Math. Soc., 56 (2001), 135-149.
|
[6] |
T. A. Gulliver and J.-L. Kim,
Circulant based extremal additive self-dual codes over GF(4), IEEE Trans. on Inform. Theory, 50 (2004), 359-366.
doi: 10.1109/TIT.2003.822616. |
[7] |
G. Höhn,
Self-dual codes over the Kleinian four group, Math. Ann., 327 (2003), 227-255.
doi: 10.1007/s00208-003-0440-y. |
[8] |
P. R. J. Östergard,
Classifying subspaces of Hamming spaces, Des. Codes Cryptogr., 27 (2002), 297-305.
doi: 10.1023/A:1019903407222. |
[9] |
V. S. Pless and W. C. Huffman, Handbook of Coding Theory, North-Holland, Amsterdam, 1998. |
[10] |
Z. Varbanov,
Some new results for additive self-dual codes over GF(4), Serdica J. Comput., 1 (2007), 213-227.
|
show all references
References:
[1] |
A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane,
Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
doi: 10.1109/18.681315. |
[2] |
J. Cannon, W. Bosma, C. Fieker and A. Steel, Handbook of Magma Functions, Version 2.19, Sydney, 2013. |
[3] |
L. E. Danielsen and M. G. Parker,
Directed graph representation of half-rate additive codes over GF(4), Des. Codes Cryptogr., 59 (2011), 119-130.
doi: 10.1007/s10623-010-9469-6. |
[4] |
L. E. Danielsen and M. G. Parker,
On the classification of all self-dual additive codes over GF(4) of length up to 12, J. Combin. Theory Ser. A, 113 (2006), 1351-1367.
doi: 10.1016/j.jcta.2005.12.004. |
[5] |
P. Gaborit, W. C. Huffman, J. L. Kim and V. Pless,
On additive GF(4) codes, DIMACS Workshop Codes Assoc. Schemes, DIMACS Ser. Discr. Math. Theoret. Comp. Sci., Amer. Math. Soc., 56 (2001), 135-149.
|
[6] |
T. A. Gulliver and J.-L. Kim,
Circulant based extremal additive self-dual codes over GF(4), IEEE Trans. on Inform. Theory, 50 (2004), 359-366.
doi: 10.1109/TIT.2003.822616. |
[7] |
G. Höhn,
Self-dual codes over the Kleinian four group, Math. Ann., 327 (2003), 227-255.
doi: 10.1007/s00208-003-0440-y. |
[8] |
P. R. J. Östergard,
Classifying subspaces of Hamming spaces, Des. Codes Cryptogr., 27 (2002), 297-305.
doi: 10.1023/A:1019903407222. |
[9] |
V. S. Pless and W. C. Huffman, Handbook of Coding Theory, North-Holland, Amsterdam, 1998. |
[10] |
Z. Varbanov,
Some new results for additive self-dual codes over GF(4), Serdica J. Comput., 1 (2007), 213-227.
|
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Circulant/Non-Circulant | ||
Circulant |
Circulant/Non-Circulant | ||
Circulant |
Circulant/Non-Circulant | ||
Non-Circulant | ||
Circulant | ||
Non-Circulant | ||
Circulant | ||
Non-Circulant |
Circulant/Non-Circulant | ||
Non-Circulant | ||
Circulant | ||
Non-Circulant | ||
Circulant | ||
Non-Circulant |
Circulant/Non-Circulant | ||
Circulant | ||
Non-Circulant | ||
Non-Circulant | ||
Non-Circulant | ||
Non-Circulant | ||
Circulant | ||
Non-Circulant | ||
Non-Circulant |
Circulant/Non-Circulant | ||
Circulant | ||
Non-Circulant | ||
Non-Circulant | ||
Non-Circulant | ||
Non-Circulant | ||
Circulant | ||
Non-Circulant | ||
Non-Circulant |
Circulant/Non-Circulant | ||
Circulant | ||
Circulant |
Circulant/Non-Circulant | ||
Circulant | ||
Circulant |
Circulant/Non-Circulant | ||
Non-Circulant | ||
Non-Circulant | ||
Circulant |
Circulant/Non-Circulant | ||
Non-Circulant | ||
Non-Circulant | ||
Circulant |
Circulant/Non-Circulant | ||
Non-Circulant |
Circulant/Non-Circulant | ||
Non-Circulant |
Circulant/Non-Circulant | ||
Non-Circulant | ||
Non-Circulant |
Circulant/Non-Circulant | ||
Non-Circulant | ||
Non-Circulant |
Circulant/Non-Circulant | ||
Non-Circulant | ||
Circulant | ||
Circulant |
Circulant/Non-Circulant | ||
Non-Circulant | ||
Circulant | ||
Circulant |
Circulant/Non-Circulant | ||
Non-Circulant |
Circulant/Non-Circulant | ||
Non-Circulant |
Circulant/Non-Circulant | ||
Circulant | ||
Circulant |
Circulant/Non-Circulant | ||
Circulant | ||
Circulant |
Upper Generator Vector | Lower Generator Vector |
Upper Generator Vector | Lower Generator Vector |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vector | Lower Generator Vector |
Upper Generator Vector | Lower Generator Vector |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vector | Lower Generator Vector |
Upper Generator Vector | Lower Generator Vector |
Upper Generator Vector | Lower Generator Vector |
Upper Generator Vector | Lower Generator Vector |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
Upper Generator Vectors | Lower Generator Vectors |
[1] |
W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2008, 2 (3) : 309-343. doi: 10.3934/amc.2008.2.309 |
[2] |
W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2007, 1 (4) : 427-459. doi: 10.3934/amc.2007.1.427 |
[3] |
Arezoo Soufi Karbaski, Taher Abualrub, Nuh Aydin, Peihan Liu. Additive polycyclic codes over $ \mathbb{F}_{4} $ induced by binary vectors and some optimal codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022004 |
[4] |
Ken Saito. Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs. Advances in Mathematics of Communications, 2019, 13 (2) : 213-220. doi: 10.3934/amc.2019014 |
[5] |
Evangeline P. Bautista, Philippe Gaborit, Jon-Lark Kim, Judy L. Walker. s-extremal additive $\mathbb F_4$ codes. Advances in Mathematics of Communications, 2007, 1 (1) : 111-130. doi: 10.3934/amc.2007.1.111 |
[6] |
W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357 |
[7] |
Taher Abualrub, Steven T. Dougherty. Additive and linear conjucyclic codes over $ {\mathbb{F}}_4 $. Advances in Mathematics of Communications, 2022, 16 (1) : 1-15. doi: 10.3934/amc.2020096 |
[8] |
Padmapani Seneviratne, Martianus Frederic Ezerman. New quantum codes from metacirculant graphs via self-dual additive $\mathbb{F}_4$-codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2021073 |
[9] |
Helena Rifà-Pous, Josep Rifà, Lorena Ronquillo. $\mathbb{Z}_2\mathbb{Z}_4$-additive perfect codes in Steganography. Advances in Mathematics of Communications, 2011, 5 (3) : 425-433. doi: 10.3934/amc.2011.5.425 |
[10] |
Makoto Araya, Masaaki Harada, Hiroki Ito, Ken Saito. On the classification of $\mathbb{Z}_4$-codes. Advances in Mathematics of Communications, 2017, 11 (4) : 747-756. doi: 10.3934/amc.2017054 |
[11] |
Simeon Ball, Guillermo Gamboa, Michel Lavrauw. On additive MDS codes over small fields. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021024 |
[12] |
Habibul Islam, Om Prakash, Patrick Solé. $ \mathbb{Z}_{4}\mathbb{Z}_{4}[u] $-additive cyclic and constacyclic codes. Advances in Mathematics of Communications, 2021, 15 (4) : 737-755. doi: 10.3934/amc.2020094 |
[13] |
Om Prakash, Shikha Yadav, Habibul Islam, Patrick Solé. On $ \mathbb{Z}_4\mathbb{Z}_4[u^3] $-additive constacyclic codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022017 |
[14] |
Tingting Wu, Jian Gao, Yun Gao, Fang-Wei Fu. $ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 641-657. doi: 10.3934/amc.2018038 |
[15] |
T. Aaron Gulliver, Masaaki Harada, Hiroki Miyabayashi. Double circulant and quasi-twisted self-dual codes over $\mathbb F_5$ and $\mathbb F_7$. Advances in Mathematics of Communications, 2007, 1 (2) : 223-238. doi: 10.3934/amc.2007.1.223 |
[16] |
Thomas Feulner. Canonization of linear codes over $\mathbb Z$4. Advances in Mathematics of Communications, 2011, 5 (2) : 245-266. doi: 10.3934/amc.2011.5.245 |
[17] |
Lars Eirik Danielsen. Graph-based classification of self-dual additive codes over finite fields. Advances in Mathematics of Communications, 2009, 3 (4) : 329-348. doi: 10.3934/amc.2009.3.329 |
[18] |
Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028 |
[19] |
Roghayeh Mohammadi Hesari, Mahboubeh Hosseinabadi, Rashid Rezaei, Karim Samei. $\mathbb{F}_{p^{m}}\mathbb{F}_{p^{m}}{[u^2]}$-additive skew cyclic codes of length $2p^s $. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022023 |
[20] |
Karim Samei, Saadoun Mahmoudi. Singleton bounds for R-additive codes. Advances in Mathematics of Communications, 2018, 12 (1) : 107-114. doi: 10.3934/amc.2018006 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]