November  2020, 14(4): 535-553. doi: 10.3934/amc.2020027

Group signature from lattices preserving forward security in dynamic setting

Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India

* Corresponding author: Meenakshi Kansal

Received  October 2018 Revised  March 2019 Published  September 2019

We propose the first lattice-based dynamic group signature scheme achieving forward security. Our scheme is proven to be secure against framing attack, misidentification attack and preserves anonymity under the learning with errors (${\mathsf{LWE}}$) and short integer solution (${\mathsf{SIS}}$) assumptions in the random oracle model. More interestingly, our setting allows the group manager to generate distinct certificates to distinct users which can be updated by the users themselves without any interaction with the group manager. Furthermore, our scheme is dynamic where signing key of a user is not fixed during the setup and is issued only at the joining time of the user.

Citation: Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay. Group signature from lattices preserving forward security in dynamic setting. Advances in Mathematics of Communications, 2020, 14 (4) : 535-553. doi: 10.3934/amc.2020027
References:
[1]

S. Agrawal, D. Boneh and X. Boyen, Efficient lattice (H)IBE in the standard model, in Advances in cryptology—EUROCRYPT 2010, Lecture Notes in Comput. Sci., Springer, Berlin, 6110 (2010), 553–572. doi: 10.1007/978-3-642-13190-5_28.  Google Scholar

[2]

M. Ajtai, Generating hard instances of lattice problems (extended abstract), in Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, ACM, New York, (1996), 99–108. doi: 10.1145/237814.237838.  Google Scholar

[3]

J. Alwen and C. Peikert, Generating shorter bases for hard random lattices, Theory of Computing Systems, 48 (2011), 535-553.  doi: 10.1007/s00224-010-9278-3.  Google Scholar

[4]

E. Brickell, D. Pointcheval, S. Vaudenay and M. Yung, Design validations for discrete logarithm based signature schemes, in Public Key Cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 1751 (2000), 276–292. doi: 10.1007/978-3-540-46588-1_19.  Google Scholar

[5]

J. Camenisch, G. Neven and M. Rückert, Fully anonymous attribute tokens from lattices, in International Conference on Security and Cryptography for Networks, Springer, 2012, 57–75. doi: 10.1007/978-3-642-32928-9_4.  Google Scholar

[6]

D. Cash, D. Hofheinz, E. Kiltz and C. Peikert, Bonsai trees, or how to delegate a lattice basis, in Advances in cryptology—EUROCRYPT 2010, Lecture Notes in Comput. Sci., Springer, Berlin, 6110 (2010), 523–552. doi: 10.1007/978-3-642-13190-5_27.  Google Scholar

[7]

C. Gentry, C. Peikert and V. Vaikuntanathan, Trapdoors for hard lattices and new cryptographic constructions, in STOC'08, ACM, New York, (2008), 197–206. doi: 10.1145/1374376.1374407.  Google Scholar

[8]

S. D. Gordon, J. Katz and V. Vaikuntanathan, A group signature scheme from lattice assumptions, in Advances in cryptology—ASIACRYPT 2010, Lecture Notes in Comput. Sci., Springer, Berlin, 6477 (2010), 395–412. doi: 10.1007/978-3-642-17373-8_23.  Google Scholar

[9]

U. Hohenberger, Honest verifier zk and fiat-shamir (lecture 1), (2007), https://www.cs.jhu.edu/susan/600.641/scribes/lecture11.pdf. Google Scholar

[10]

F. Laguillaumie, A. Langlois, B. Libert and D. Stehlé, Lattice-based group signatures with logarithmic signature size, in Advances in cryptology—ASIACRYPT 2013. Part Ⅱ, Lecture Notes in Comput. Sci., Springer, Heidelberg, 8270 (2013), 41–61. doi: 10.1007/978-3-642-42045-0_3.  Google Scholar

[11]

B. Libert, S. Ling, F. Mouhartem, K. Nguyen and H. X. Wang, Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions, in Advances in Cryptology—ASIACRYPT 2016. Part Ⅱ, Lecture Notes in Comput. Sci., Springer, Berlin, 10032 (2016), 373–403. doi: 10.1007/978-3-662-53890-6_13.  Google Scholar

[12]

B. Libert and M. Yung, Fully forward-secure group signatures, in Cryptography and Security: From Theory to Applications, Springer, (2012), 156–184. doi: 10.1007/978-3-642-28368-0_13.  Google Scholar

[13]

S. Ling, K. Nguyen, D. Stehlé and H. X. Wang, Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications, in Public Key Cryptography—PKC 2013, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7778 (2013), 107–124. doi: 10.1007/978-3-642-36362-7_8.  Google Scholar

[14]

S. Ling, K. Nguyen and H. X. Wang, Group signatures from lattices: simpler, tighter, shorter, ring-based, in Public-key Cryptography—PKC 2015, Lecture Notes in Comput. Sci., Springer, Heidelberg, 9020 (2015), 427–449. doi: 10.1007/978-3-662-46447-2_19.  Google Scholar

[15]

S. Ling, K. Nguyen, H. X. Wang and Y. H. Xu, Forward-secure group signatures from lattices, International Conference on Post-Quantum Cryptography, 11505 (2019), 44–64, arXiv: 1801.08323. doi: 10.1007/978-3-030-25510-7_3.  Google Scholar

[16]

O. Regev, On lattices, learning with errors, random linear codes, and cryptography, Journal of the ACM (JACM), 56 (2009), Art. 34, 40 pp. doi: 10.1145/1568318.1568324.  Google Scholar

show all references

References:
[1]

S. Agrawal, D. Boneh and X. Boyen, Efficient lattice (H)IBE in the standard model, in Advances in cryptology—EUROCRYPT 2010, Lecture Notes in Comput. Sci., Springer, Berlin, 6110 (2010), 553–572. doi: 10.1007/978-3-642-13190-5_28.  Google Scholar

[2]

M. Ajtai, Generating hard instances of lattice problems (extended abstract), in Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, ACM, New York, (1996), 99–108. doi: 10.1145/237814.237838.  Google Scholar

[3]

J. Alwen and C. Peikert, Generating shorter bases for hard random lattices, Theory of Computing Systems, 48 (2011), 535-553.  doi: 10.1007/s00224-010-9278-3.  Google Scholar

[4]

E. Brickell, D. Pointcheval, S. Vaudenay and M. Yung, Design validations for discrete logarithm based signature schemes, in Public Key Cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 1751 (2000), 276–292. doi: 10.1007/978-3-540-46588-1_19.  Google Scholar

[5]

J. Camenisch, G. Neven and M. Rückert, Fully anonymous attribute tokens from lattices, in International Conference on Security and Cryptography for Networks, Springer, 2012, 57–75. doi: 10.1007/978-3-642-32928-9_4.  Google Scholar

[6]

D. Cash, D. Hofheinz, E. Kiltz and C. Peikert, Bonsai trees, or how to delegate a lattice basis, in Advances in cryptology—EUROCRYPT 2010, Lecture Notes in Comput. Sci., Springer, Berlin, 6110 (2010), 523–552. doi: 10.1007/978-3-642-13190-5_27.  Google Scholar

[7]

C. Gentry, C. Peikert and V. Vaikuntanathan, Trapdoors for hard lattices and new cryptographic constructions, in STOC'08, ACM, New York, (2008), 197–206. doi: 10.1145/1374376.1374407.  Google Scholar

[8]

S. D. Gordon, J. Katz and V. Vaikuntanathan, A group signature scheme from lattice assumptions, in Advances in cryptology—ASIACRYPT 2010, Lecture Notes in Comput. Sci., Springer, Berlin, 6477 (2010), 395–412. doi: 10.1007/978-3-642-17373-8_23.  Google Scholar

[9]

U. Hohenberger, Honest verifier zk and fiat-shamir (lecture 1), (2007), https://www.cs.jhu.edu/susan/600.641/scribes/lecture11.pdf. Google Scholar

[10]

F. Laguillaumie, A. Langlois, B. Libert and D. Stehlé, Lattice-based group signatures with logarithmic signature size, in Advances in cryptology—ASIACRYPT 2013. Part Ⅱ, Lecture Notes in Comput. Sci., Springer, Heidelberg, 8270 (2013), 41–61. doi: 10.1007/978-3-642-42045-0_3.  Google Scholar

[11]

B. Libert, S. Ling, F. Mouhartem, K. Nguyen and H. X. Wang, Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions, in Advances in Cryptology—ASIACRYPT 2016. Part Ⅱ, Lecture Notes in Comput. Sci., Springer, Berlin, 10032 (2016), 373–403. doi: 10.1007/978-3-662-53890-6_13.  Google Scholar

[12]

B. Libert and M. Yung, Fully forward-secure group signatures, in Cryptography and Security: From Theory to Applications, Springer, (2012), 156–184. doi: 10.1007/978-3-642-28368-0_13.  Google Scholar

[13]

S. Ling, K. Nguyen, D. Stehlé and H. X. Wang, Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications, in Public Key Cryptography—PKC 2013, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7778 (2013), 107–124. doi: 10.1007/978-3-642-36362-7_8.  Google Scholar

[14]

S. Ling, K. Nguyen and H. X. Wang, Group signatures from lattices: simpler, tighter, shorter, ring-based, in Public-key Cryptography—PKC 2015, Lecture Notes in Comput. Sci., Springer, Heidelberg, 9020 (2015), 427–449. doi: 10.1007/978-3-662-46447-2_19.  Google Scholar

[15]

S. Ling, K. Nguyen, H. X. Wang and Y. H. Xu, Forward-secure group signatures from lattices, International Conference on Post-Quantum Cryptography, 11505 (2019), 44–64, arXiv: 1801.08323. doi: 10.1007/978-3-030-25510-7_3.  Google Scholar

[16]

O. Regev, On lattices, learning with errors, random linear codes, and cryptography, Journal of the ACM (JACM), 56 (2009), Art. 34, 40 pp. doi: 10.1145/1568318.1568324.  Google Scholar

Figure 1.  Node Labeling
Table 1.  Comparative summary of lattice based group signature schemes
Scheme Forward secure Dynamic Signature size Public key size Certificate size Signer's SK size
[8] No No $ N\cdot \tilde{\mathcal{O}}(n^2) $ $ N\cdot \tilde{\mathcal{O}}(n^2) $ - $ \tilde{\mathcal{O}}(n^2) $
[5] No No $ N\cdot \tilde{\mathcal{O}}(n^2) $ $ N\cdot \tilde{\mathcal{O}}(n^2) $ - $ \tilde{\mathcal{O}}(n^2) $
[10] No No $ \log N \cdot \tilde{\mathcal{O}}(n) $ $ \log N \cdot \tilde{\mathcal{O}}(n^2) $ - $ \tilde{\mathcal{O}}(n^2) $
[14] No No $ \log N \cdot \tilde{\mathcal{O}}(n) $ $ \log N \cdot \tilde{\mathcal{O}}(n^2) $ - $ \tilde{\mathcal{O}}(n) $
[11] No Yes $ \log N \cdot \tilde{\mathcal{O}}(n) $ $ \log N \cdot \tilde{\mathcal{O}}(n^2) $ $ \log N \cdot \mathcal{O}(n) $ $ \tilde{\mathcal{O}}(n) $
[15] Yes No $ \log N \cdot \tilde{\mathcal{O}}(n) $ $ \log N \cdot \tilde{\mathcal{O}}(n^2) $ - $ \log N \; \tilde{\mathcal{O}}(n^2) $
Ours Yes Yes $ \log N\; \tilde{\mathcal{O}}(n^3) $ $ \log N \cdot \tilde{\mathcal{O}}(n^2) $ $ \log N \; \tilde{\mathcal{O}}(n^2) $ $ \tilde{\mathcal{O}}(n) $
Scheme Forward secure Dynamic Signature size Public key size Certificate size Signer's SK size
[8] No No $ N\cdot \tilde{\mathcal{O}}(n^2) $ $ N\cdot \tilde{\mathcal{O}}(n^2) $ - $ \tilde{\mathcal{O}}(n^2) $
[5] No No $ N\cdot \tilde{\mathcal{O}}(n^2) $ $ N\cdot \tilde{\mathcal{O}}(n^2) $ - $ \tilde{\mathcal{O}}(n^2) $
[10] No No $ \log N \cdot \tilde{\mathcal{O}}(n) $ $ \log N \cdot \tilde{\mathcal{O}}(n^2) $ - $ \tilde{\mathcal{O}}(n^2) $
[14] No No $ \log N \cdot \tilde{\mathcal{O}}(n) $ $ \log N \cdot \tilde{\mathcal{O}}(n^2) $ - $ \tilde{\mathcal{O}}(n) $
[11] No Yes $ \log N \cdot \tilde{\mathcal{O}}(n) $ $ \log N \cdot \tilde{\mathcal{O}}(n^2) $ $ \log N \cdot \mathcal{O}(n) $ $ \tilde{\mathcal{O}}(n) $
[15] Yes No $ \log N \cdot \tilde{\mathcal{O}}(n) $ $ \log N \cdot \tilde{\mathcal{O}}(n^2) $ - $ \log N \; \tilde{\mathcal{O}}(n^2) $
Ours Yes Yes $ \log N\; \tilde{\mathcal{O}}(n^3) $ $ \log N \cdot \tilde{\mathcal{O}}(n^2) $ $ \log N \; \tilde{\mathcal{O}}(n^2) $ $ \tilde{\mathcal{O}}(n) $
[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[3]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[4]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[5]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[6]

Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. A comparative study of atomistic-based stress evaluation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020322

[7]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[8]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[9]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[10]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[11]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[12]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[13]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[14]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[15]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[16]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 0.734

Article outline

Figures and Tables

[Back to Top]