Galois images of polycyclic codes over a finite chain ring $ S $ and their annihilator dual are investigated. The case when a polycyclic code is Galois-disjoint over the ring $ S, $ is characterized and, the trace codes and restrictions of free polycyclic codes over $ S $ are also determined giving an analogue of Delsarte's theorem relating the trace code and the annihilator dual code.
Citation: |
[1] |
A. Alahmadi, S. Dougherty, A. Leroy and P. Solé, On the duality and the direction of polycyclic codes, Adv. Math. Commun., 10 (2016), 921-929.
doi: 10.3934/amc.2016049.![]() ![]() ![]() |
[2] |
T. Blackford, The Galois variance of constacyclic codes, Finite Fields Appl., 47 (2017), 286-308.
doi: 10.1016/j.ffa.2017.06.001.![]() ![]() ![]() |
[3] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() ![]() |
[4] |
A. Fotue Tabue and C. Mouaha, Contraction of cyclic codes over finite chain rings, Discrete Mathematics, 341 (2018), 1722-1731.
doi: 10.1016/j.disc.2018.03.008.![]() ![]() ![]() |
[5] |
A. Fotue Tabue, E. Martínez-Moro and C. Mouaha, Galois correspondence on linear codes over finite chain rings, in Discrete Mathematics.
![]() |
[6] |
X. -Dong Hou, S. R. Lopez-Permouth and B. Parra-Avila, Rational power series, sequential codes and periodicity of sequences, J. Pure Appl. Algebra, 213 (2009), 1157-1169.
doi: 10.1016/j.jpaa.2008.11.011.![]() ![]() ![]() |
[7] |
T. Kasami, Optimum shortened cyclic codes for burst-error correction, IEEE Trans. Inform. Theory, 9 (1963), 105-109.
doi: 10.1109/tit.1963.1057825.![]() ![]() ![]() |
[8] |
S. R. López-Permouth, H. Özadam, F. Özbudak and S. Szabo, Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes, Finite Fields Appl., 19 (2013), 16-38.
doi: 10.1016/j.ffa.2012.10.002.![]() ![]() ![]() |
[9] |
S. R. López-Permouth, B. R. Parra-Avila and S. Szabo, Dual generalizations of the concept of cyclicity of codes, Adv. Math. Commun., 3 (2009), 227-234.
doi: 10.3934/amc.2009.3.227.![]() ![]() ![]() |
[10] |
B. R. McDonald, Finite rings with identity, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 28 (1974).
![]() ![]() |
[11] |
E. Martínez-Moro, A. Piñera-Nicolás and F. I. Rúa, Codes over affine algebras with a finite commutative chain coefficient ring, Finite Fields Appl., 49 (2018), 94-107.
doi: 10.1016/j.ffa.2017.09.008.![]() ![]() ![]() |
[12] |
E. Martínez-Moro, A. P. Nicolás and I. F. Rúa, On trace codes and Galois invariance over finite commutative chain rings, Finite Fields Appl., 22 (2013), 114-121.
doi: 10.1016/j.ffa.2013.03.004.![]() ![]() ![]() |
[13] |
A. A. Nechaev, Finite rings with applications, in: Handbook of Algebra, Handb. Algebr., Elsevier/North-Holland, Amsterdam, 5 (2008), 213–320.
doi: 10.1016/S1570-7954(07)05005-X.![]() ![]() ![]() |
[14] |
G. H. Norton and A. Sǎlǎgean, On the structure of linear and cyclic codes over finite chain rings, Appl Algebra Eng Commun Comput., 10 (2000), 489-506.
doi: 10.1007/PL00012382.![]() ![]() ![]() |
[15] |
G. H. Norton and A. Sǎlǎgean, Cyclic codes and minimal strong Gröbner bases over a principal ideal ring, Finite Fields Appl., 9 (2003), 237-249.
doi: 10.1016/S1071-5797(03)00003-0.![]() ![]() ![]() |
[16] |
W. W. Peterson and E. J. Weldon, Error correcting codes, MIT Press, Cambridge, Mass.-London, 1972.
![]() ![]() |
[17] |
Z.-X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
doi: 10.1142/5350.![]() ![]() ![]() |
Cyclicity of codes