November  2020, 14(4): 555-572. doi: 10.3934/amc.2020029

Some results on $ \mathbb{Z}_p\mathbb{Z}_p[v] $-additive cyclic codes

1. 

School of Mathematics and Statistics, Shandong University of Technology, Zibo, 255000, China

2. 

Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan, 430062, China

3. 

School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, 410114, China

4. 

College of Science, Tianjin University of Science and Technology, Tianjin, 300071, China

* Corresponding author: Jian Gao, dezhougaojian@163.com

Received  December 2018 Revised  May 2019 Published  November 2020 Early access  September 2019

Fund Project: This research is supported by the National Natural Science Foundation of China (Grant No. 11701336, 11626144 and 11671235), the Scientific Research Fund of Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (Grant No. 2018MMAEZD09), the Scientific Research Fund of Hubei Provincial Key Laboratory of Applied Mathematics (Hubei University)(Grant No. AM201804.)

$ \mathbb{Z}_p\mathbb{Z}_p[v] $-Additive cyclic codes of length $ (\alpha,\beta) $ can be viewed as $ R[x] $-submodules of $ \mathbb{Z}_p[x]/(x^\alpha-1)\times R[x]/(x^\beta-1) $, where $ R = \mathbb{Z}_p+v\mathbb{Z}_p $ with $ v^2 = v $. In this paper, we determine the generator polynomials and the minimal generating sets of this family of codes as $ R[x] $-submodules of $ \mathbb{Z}_p[x]/(x^\alpha-1)\times R[x]/(x^\beta-1) $. We also determine the generator polynomials of the dual codes of $ \mathbb{Z}_p\mathbb{Z}_p[v] $-additive cyclic codes. Some optimal $ \mathbb{Z}_p\mathbb{Z}_p[v] $-linear codes and MDSS codes are obtained from $ \mathbb{Z}_p\mathbb{Z}_p[v] $-additive cyclic codes. Moreover, we also get some quantum codes from $ \mathbb{Z}_p\mathbb{Z}_p[v] $-additive cyclic codes.

Citation: Lingyu Diao, Jian Gao, Jiyong Lu. Some results on $ \mathbb{Z}_p\mathbb{Z}_p[v] $-additive cyclic codes. Advances in Mathematics of Communications, 2020, 14 (4) : 555-572. doi: 10.3934/amc.2020029
References:
[1]

T. AbualrubI. Siap and N. Aydin, $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014), 1508-1514.  doi: 10.1109/TIT.2014.2299791.

[2]

T. Abualrub, I. Siap and I. Aydogdu, $\mathbb{Z}_2(\mathbb{Z}_2+u\mathbb{Z}_2)$-Linear Cyclic Codes, Proceedings of the International MultiConference of Engineers and Computer Scientists, Ⅱ, 2014.

[3]

M. Ashraf and G. Mohammad, Construction of quantum codes from cyclic codes over $\mathbb{F}_p+v\mathbb{F}_p$, Int. J. Information and Coding Theory, 3 (2015), 137-144.  doi: 10.1504/IJICOT.2015.072627.

[4]

I. AydogduT. Abualrub and I. Siap, On $\mathbb{Z}_2\mathbb{Z}_2[u]$-additive codes, Int. J. Comput. Math., 92 (2015), 1806-1814.  doi: 10.1080/00207160.2013.859854.

[5]

I. Aydogdu and I. Siap, On $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$-additive Codes, Linear Multilinear Algebra, 63 (2015), 2089-2102.  doi: 10.1080/03081087.2014.952728.

[6]

I. AydogduT. Abualrub and I. Siap, $\mathbb{Z}_2\mathbb{Z}_2[u]$-cyclic and constacyclic codes, IEEE Trans. Inform. Theory, 63 (2017), 4883-4893.  doi: 10.1109/TIT.2016.2632163.

[7]

J. BorgesC. Fernández-CórdobaJ. Pujol and J. Rifà, $\mathbb{Z}_2\mathbb{Z}_4$-linear codes: Geneartor matrices and duality, Des. Codes Cryptogr., 54 (2010), 167-179.  doi: 10.1007/s10623-009-9316-9.

[8]

J. BorgesC. Fernández-Córdoba and R. Ten-Valls, $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, generator polynomials and dual codes, IEEE Trans. Inform. Theory, 62 (2016), 6348-6354.  doi: 10.1109/TIT.2016.2611528.

[9]

A. R. CalderbankE. M. RainsP. M. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.

[10]

P. Delsarte and V. I. Levenshtein, Association schemes and coding theory: 1948–1998, IEEE Trans. Inform. Theory, 44 (1998), 2477-2504.  doi: 10.1109/18.720545.

[11]

Y. Edel, Some Good Quantum Twisted Codes [Online], Available: https://www.mathi.uni-heidelberg.de/yves/Matritzen/QTBCH/QTBCHIndex.html.

[12]

J. Gao and Y. K. Wang, $u$-Constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p$ and their applications of constructing new non-binary quantum codes, Quantum Inf. Process, 17 (2018), Art. 4, 9 pp. doi: 10.1007/s11128-017-1775-8.

[13]

J. Gao and Y. K. Wang, Quantum codes derived from negacyclic codes, Int. J. Theor. Phys., 57 (2018), 682-686.  doi: 10.1007/s10773-017-3599-9.

[14]

Y. GaoJ. Gao and F.-W. Fu, Quantum codes from cyclic codes over the ring $\mathbb{F}_q + v_1\mathbb{F}_q +\cdots+ v_r\mathbb{F}_q$, Applicable Algebra in Engineering, Communication and Computing, 30 (2019), 161-174.  doi: 10.1007/s00200-018-0366-y.

[15]

A. R. HammonsP. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.

[16]

M. E. Koroglu and I. Siap, Quantum codes from a class of constacyclic codes over group algebras, Malaysian Journal of Mathematical Sciences, 11 (2017), 289-301. 

[17]

F. H. Ma, J. Gao and F.-W. Fu, Constacyclic codes over the ring $\mathbb{F}_q+v\mathbb{F}_q+v_2\mathbb{F}_q$ and their applications of constructing new non-binary quantum codes, Quantum Inf. Processing, (2018), https://doi.org/10.1007/s11128-018-1898-6.

[18]

F. J. MacMilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.

[19]

R. C. Singleton, Maximum distance $q$-ary codes, IEEE Trans. Inform. Theory, 10 (1964), 116-118.  doi: 10.1109/tit.1964.1053661.

[20]

B. Srinivasulu and M. Bhaintwal, $\mathbb{Z}_2(\mathbb{Z}_2+u\mathbb{Z}_2)$-Additive cyclic codes and their duals, Discrete Math. Algorithm. Appl., 8, (2016), 1650027, 19 pp. doi: 10.1142/S1793830916500270.

[21]

Z.-X. Wan, Quaternary Codes, Series on Applied Mathematics, 8. World Scientific Publishing Co., Inc., River Edge, NJ, 1997. doi: 10.1142/9789812798121.

[22]

S. X. ZhuY. Whang and M. J. Shi, Some results on cyclic codes over $\mathbb{F}_2+v\mathbb{F}_2$, IEEE Trans. Inform. Theory, 56 (2010), 1680-1684.  doi: 10.1109/TIT.2010.2040896.

show all references

References:
[1]

T. AbualrubI. Siap and N. Aydin, $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014), 1508-1514.  doi: 10.1109/TIT.2014.2299791.

[2]

T. Abualrub, I. Siap and I. Aydogdu, $\mathbb{Z}_2(\mathbb{Z}_2+u\mathbb{Z}_2)$-Linear Cyclic Codes, Proceedings of the International MultiConference of Engineers and Computer Scientists, Ⅱ, 2014.

[3]

M. Ashraf and G. Mohammad, Construction of quantum codes from cyclic codes over $\mathbb{F}_p+v\mathbb{F}_p$, Int. J. Information and Coding Theory, 3 (2015), 137-144.  doi: 10.1504/IJICOT.2015.072627.

[4]

I. AydogduT. Abualrub and I. Siap, On $\mathbb{Z}_2\mathbb{Z}_2[u]$-additive codes, Int. J. Comput. Math., 92 (2015), 1806-1814.  doi: 10.1080/00207160.2013.859854.

[5]

I. Aydogdu and I. Siap, On $\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$-additive Codes, Linear Multilinear Algebra, 63 (2015), 2089-2102.  doi: 10.1080/03081087.2014.952728.

[6]

I. AydogduT. Abualrub and I. Siap, $\mathbb{Z}_2\mathbb{Z}_2[u]$-cyclic and constacyclic codes, IEEE Trans. Inform. Theory, 63 (2017), 4883-4893.  doi: 10.1109/TIT.2016.2632163.

[7]

J. BorgesC. Fernández-CórdobaJ. Pujol and J. Rifà, $\mathbb{Z}_2\mathbb{Z}_4$-linear codes: Geneartor matrices and duality, Des. Codes Cryptogr., 54 (2010), 167-179.  doi: 10.1007/s10623-009-9316-9.

[8]

J. BorgesC. Fernández-Córdoba and R. Ten-Valls, $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, generator polynomials and dual codes, IEEE Trans. Inform. Theory, 62 (2016), 6348-6354.  doi: 10.1109/TIT.2016.2611528.

[9]

A. R. CalderbankE. M. RainsP. M. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.

[10]

P. Delsarte and V. I. Levenshtein, Association schemes and coding theory: 1948–1998, IEEE Trans. Inform. Theory, 44 (1998), 2477-2504.  doi: 10.1109/18.720545.

[11]

Y. Edel, Some Good Quantum Twisted Codes [Online], Available: https://www.mathi.uni-heidelberg.de/yves/Matritzen/QTBCH/QTBCHIndex.html.

[12]

J. Gao and Y. K. Wang, $u$-Constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p$ and their applications of constructing new non-binary quantum codes, Quantum Inf. Process, 17 (2018), Art. 4, 9 pp. doi: 10.1007/s11128-017-1775-8.

[13]

J. Gao and Y. K. Wang, Quantum codes derived from negacyclic codes, Int. J. Theor. Phys., 57 (2018), 682-686.  doi: 10.1007/s10773-017-3599-9.

[14]

Y. GaoJ. Gao and F.-W. Fu, Quantum codes from cyclic codes over the ring $\mathbb{F}_q + v_1\mathbb{F}_q +\cdots+ v_r\mathbb{F}_q$, Applicable Algebra in Engineering, Communication and Computing, 30 (2019), 161-174.  doi: 10.1007/s00200-018-0366-y.

[15]

A. R. HammonsP. KumarA. R. CalderbankN. J. A. Sloane and P. Solé, The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.

[16]

M. E. Koroglu and I. Siap, Quantum codes from a class of constacyclic codes over group algebras, Malaysian Journal of Mathematical Sciences, 11 (2017), 289-301. 

[17]

F. H. Ma, J. Gao and F.-W. Fu, Constacyclic codes over the ring $\mathbb{F}_q+v\mathbb{F}_q+v_2\mathbb{F}_q$ and their applications of constructing new non-binary quantum codes, Quantum Inf. Processing, (2018), https://doi.org/10.1007/s11128-018-1898-6.

[18]

F. J. MacMilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.

[19]

R. C. Singleton, Maximum distance $q$-ary codes, IEEE Trans. Inform. Theory, 10 (1964), 116-118.  doi: 10.1109/tit.1964.1053661.

[20]

B. Srinivasulu and M. Bhaintwal, $\mathbb{Z}_2(\mathbb{Z}_2+u\mathbb{Z}_2)$-Additive cyclic codes and their duals, Discrete Math. Algorithm. Appl., 8, (2016), 1650027, 19 pp. doi: 10.1142/S1793830916500270.

[21]

Z.-X. Wan, Quaternary Codes, Series on Applied Mathematics, 8. World Scientific Publishing Co., Inc., River Edge, NJ, 1997. doi: 10.1142/9789812798121.

[22]

S. X. ZhuY. Whang and M. J. Shi, Some results on cyclic codes over $\mathbb{F}_2+v\mathbb{F}_2$, IEEE Trans. Inform. Theory, 56 (2010), 1680-1684.  doi: 10.1109/TIT.2010.2040896.

Table 1.  Some optimal $ \mathbb{Z}_p\mathbb{Z}_p[v] $-linear codes $ [n,k,d] $
$p$ $[\alpha,\beta]$ Generators $(\alpha+\beta,p^k,d_L)$ $[n,k,d]$
$3$ $[4,4]$ $f=x^3+2x^2+x+2,l=x^2+x+2,g_1=x+2,g_2=x+1$ $(8,3^7,4)$ $[12,7,4]$
$3$ $[4,4]$ $f=x^3+2x^2+x+2,l=x^2+x+2,g_1=x+2,g_2=1$ $(8,3^8,3)$ $[12,8,3]$
$5$ $[6,3]$ $f=x^5+4x^4+x^3+4x^2+x+4,l=x^4+3x^3+x+3,g_1=x^2+x+1,g_2=1$ $(9,5^5,6)$ $[12,5,6]$
$7$ $[2,6]$ $f=x^2+6,l=4x+6,g_1=x+5,g_2=x+4$ $(8,7^{10},4)$ $[14,10,4]$
$3$ $[5,5]$ $f=x^5+2,l=x^4+2x^3+x+2,g_1=x+2,g_2=1$ $(10,3^9,4)$ $[15,9,4]$
$5$ $[5,5]$ $f=x^5+4,l=x^4+2x^3+4x^2+x+3,g_1=x^2+3x+1,g_2=1$ $(10,5^8,6)$ $[15,8,6]$
$5$ $[6,12]$ $f=x^3+3x^2+2x+4,l=4x^2+3x+2,g_1=x+4,g_2=x+3$ $(18,5^{25},4)$ $[30,25,4]$
$p$ $[\alpha,\beta]$ Generators $(\alpha+\beta,p^k,d_L)$ $[n,k,d]$
$3$ $[4,4]$ $f=x^3+2x^2+x+2,l=x^2+x+2,g_1=x+2,g_2=x+1$ $(8,3^7,4)$ $[12,7,4]$
$3$ $[4,4]$ $f=x^3+2x^2+x+2,l=x^2+x+2,g_1=x+2,g_2=1$ $(8,3^8,3)$ $[12,8,3]$
$5$ $[6,3]$ $f=x^5+4x^4+x^3+4x^2+x+4,l=x^4+3x^3+x+3,g_1=x^2+x+1,g_2=1$ $(9,5^5,6)$ $[12,5,6]$
$7$ $[2,6]$ $f=x^2+6,l=4x+6,g_1=x+5,g_2=x+4$ $(8,7^{10},4)$ $[14,10,4]$
$3$ $[5,5]$ $f=x^5+2,l=x^4+2x^3+x+2,g_1=x+2,g_2=1$ $(10,3^9,4)$ $[15,9,4]$
$5$ $[5,5]$ $f=x^5+4,l=x^4+2x^3+4x^2+x+3,g_1=x^2+3x+1,g_2=1$ $(10,5^8,6)$ $[15,8,6]$
$5$ $[6,12]$ $f=x^3+3x^2+2x+4,l=4x^2+3x+2,g_1=x+4,g_2=x+3$ $(18,5^{25},4)$ $[30,25,4]$
Table 2.  Some MDSS codes $ (\alpha+\beta,p^k,d_L) $
$ p $ $ [\alpha,\beta] $ Generators $ (\alpha+\beta,p^k,d_L) $
$ 3 $ $ [3,3] $ $ f=x-1,l=1,g_1=1,g_2=1 $ $ (6,3^8,2) $
$ 5 $ $ [4,4] $ $ f=x-1,l=1,g_1=1,g_2=1 $ $ (8,5^{11},2) $
$ 11 $ $ [7,8] $ $ f=x-1,l=1,g_1=1,g_2=1 $ $ (15,11^{22},2) $
$ 29 $ $ [12,6] $ $ f=x-1,l=1,g_1=1,g_2=1 $ $ (18,29^{23},2) $
$ 37 $ $ [29,31] $ $ f=x-1,l=1,g_1=1,g_2=1 $ $ (60,37^{90},2) $
$ 59 $ $ [36,68] $ $ f=x-1,l=1,g_1=1,g_2=1 $ $ (104,59^{171},2) $
$ 97 $ $ [106,93] $ $ f=x-1,l=1,g_1=1,g_2=1 $ $ (199,97^{291},2) $
$ p $ $ [\alpha,\beta] $ Generators $ (\alpha+\beta,p^k,d_L) $
$ 3 $ $ [3,3] $ $ f=x-1,l=1,g_1=1,g_2=1 $ $ (6,3^8,2) $
$ 5 $ $ [4,4] $ $ f=x-1,l=1,g_1=1,g_2=1 $ $ (8,5^{11},2) $
$ 11 $ $ [7,8] $ $ f=x-1,l=1,g_1=1,g_2=1 $ $ (15,11^{22},2) $
$ 29 $ $ [12,6] $ $ f=x-1,l=1,g_1=1,g_2=1 $ $ (18,29^{23},2) $
$ 37 $ $ [29,31] $ $ f=x-1,l=1,g_1=1,g_2=1 $ $ (60,37^{90},2) $
$ 59 $ $ [36,68] $ $ f=x-1,l=1,g_1=1,g_2=1 $ $ (104,59^{171},2) $
$ 97 $ $ [106,93] $ $ f=x-1,l=1,g_1=1,g_2=1 $ $ (199,97^{291},2) $
Table 3.  Quantum codes $ [[N,K,\geq D]]_p $}
$[\alpha, \beta]$ $f$ $g_1$ $g_2$ $(\alpha+\beta, p^k, d_L)$ $[[N, K, \geq D]]_p$ $[[N', K', D']]_p$
$[5, 5]$ 1, 3, 1 1, 3, 1 1, 3, 1 $(10, 5^9, 3)$ $[[15, 3, \geq3]]_5$ -
$[20, 5]$ 1, 3, 2, 3, 1 1, 3, 1 1, 3, 1 $(25, 5^{22}, 3)$ $[[30, 14, \geq3]]_5$ $[[10, 4, 3]]_5$ (ref.[12])
$[11, 11]$ 1, 7, 6, 7, 1 1, 7, 6, 7, 1 1, 7, 6, 7, 1 $(22, 11^{21}, 5)$ $[[33, 9, \geq5]]_{11}$ -
$[21, 7]$ 1, 6, 0, 6, 1 1, 5, 1 1, 5, 1 $(28, 7^{27}, 3)$ $[[35, 19, \geq3]]_7$ $[[18, 2, 3]]_7$ (ref.[16])
$[14, 14]$ 1, 1, 5, 5, 1, 1 1, 1, 5, 5, 1, 1 1, 1, 5, 5, 1, 1 $(28, 7^{27}, 4)$ $[[42, 12, \geq4]]_7$ $[[11, 1, 4]]_7$ (ref.[11])
$[9, 18]$ 1, 2, 0, 2, 1 1, 0, 2, 2, 0, 1 1, 0, 2, 2, 0, 1 $(27, 3^{31}, 3)$ $[[45, 17, \geq3]]_3$ -
$[17, 17]$ 1, 13, 6, 13, 1 1, 13, 6, 13, 1 1, 13, 6, 13, 1 $(34, 17^{39}, 5)$ $[[51, 27, \geq5]]_{17}$ $[[48, 24, 5]]_{17}$ (ref.[14])
$[26, 13]$ 1, 10, 2, 2, 10, 1 1, 9, 6, 9, 1 1, 9, 6, 9, 1 $(39, 13^{39}, 4)$ $[[52, 26, \geq4]]_{13}$ $[[24, 12, 4]]_{13}$ (ref.[14])
$[20, 20]$ 1, 3, 2, 3, 1 1, 3, 2, 3, 1 1, 3, 2, 3, 1 $(40, 5^{48}, 3)$ $[[60, 36, \geq3]]_5$ $[[60, 56, 2]]_5$ (ref.[12])
$[22, 22]$ 1, 1, 9, 9, 1, 1 1, 1, 9, 9, 1, 1 1, 1, 9, 9, 1, 1 $(44, 11^{51}, 4)$ $[[66, 36, \geq4]]_{11}$ $[[52, 28, 3]]_{11}$(ref.[16])
$[30, 30]$ 1, 2, 4, 2, 1 1, 2, 4, 2, 1 1, 2, 4, 2, 1 $(60, 5^{78}, 3)$ $[[90, 66, \geq3]]_5$ $[[30, 20, 3]]_5$ (ref.[17])
$[46, 23]$ 1, 22, 22, 1 1, 21, 1 1, 21, 1 $(69, 23^{85}, 3)$ $[[92, 78, \geq3]]_{23}$ $[[48, 40, \geq3]]_{23}$ (ref.[13])
$[31, 31]$ 1, 29, 1 1, 29, 1 1, 29, 1 $(62, 31^{87}, 3)$ $[[93, 81, \geq3]]_{31}$ $[[52, 44, \geq3]]_{31}$ (ref.[13])
$[47, 47]$ 1, 45, 1 1, 45, 1 1, 45, 1 $(94, 47^{135}, 3)$ $[[141,129, \geq3]]_{47}$ -
$[59, 59]$ 1, 57, 1 1, 57, 1 1, 57, 1 $(118, 59^{171}, 3)$ $[[177,165, \geq3]]_{59}$ -
$[\alpha, \beta]$ $f$ $g_1$ $g_2$ $(\alpha+\beta, p^k, d_L)$ $[[N, K, \geq D]]_p$ $[[N', K', D']]_p$
$[5, 5]$ 1, 3, 1 1, 3, 1 1, 3, 1 $(10, 5^9, 3)$ $[[15, 3, \geq3]]_5$ -
$[20, 5]$ 1, 3, 2, 3, 1 1, 3, 1 1, 3, 1 $(25, 5^{22}, 3)$ $[[30, 14, \geq3]]_5$ $[[10, 4, 3]]_5$ (ref.[12])
$[11, 11]$ 1, 7, 6, 7, 1 1, 7, 6, 7, 1 1, 7, 6, 7, 1 $(22, 11^{21}, 5)$ $[[33, 9, \geq5]]_{11}$ -
$[21, 7]$ 1, 6, 0, 6, 1 1, 5, 1 1, 5, 1 $(28, 7^{27}, 3)$ $[[35, 19, \geq3]]_7$ $[[18, 2, 3]]_7$ (ref.[16])
$[14, 14]$ 1, 1, 5, 5, 1, 1 1, 1, 5, 5, 1, 1 1, 1, 5, 5, 1, 1 $(28, 7^{27}, 4)$ $[[42, 12, \geq4]]_7$ $[[11, 1, 4]]_7$ (ref.[11])
$[9, 18]$ 1, 2, 0, 2, 1 1, 0, 2, 2, 0, 1 1, 0, 2, 2, 0, 1 $(27, 3^{31}, 3)$ $[[45, 17, \geq3]]_3$ -
$[17, 17]$ 1, 13, 6, 13, 1 1, 13, 6, 13, 1 1, 13, 6, 13, 1 $(34, 17^{39}, 5)$ $[[51, 27, \geq5]]_{17}$ $[[48, 24, 5]]_{17}$ (ref.[14])
$[26, 13]$ 1, 10, 2, 2, 10, 1 1, 9, 6, 9, 1 1, 9, 6, 9, 1 $(39, 13^{39}, 4)$ $[[52, 26, \geq4]]_{13}$ $[[24, 12, 4]]_{13}$ (ref.[14])
$[20, 20]$ 1, 3, 2, 3, 1 1, 3, 2, 3, 1 1, 3, 2, 3, 1 $(40, 5^{48}, 3)$ $[[60, 36, \geq3]]_5$ $[[60, 56, 2]]_5$ (ref.[12])
$[22, 22]$ 1, 1, 9, 9, 1, 1 1, 1, 9, 9, 1, 1 1, 1, 9, 9, 1, 1 $(44, 11^{51}, 4)$ $[[66, 36, \geq4]]_{11}$ $[[52, 28, 3]]_{11}$(ref.[16])
$[30, 30]$ 1, 2, 4, 2, 1 1, 2, 4, 2, 1 1, 2, 4, 2, 1 $(60, 5^{78}, 3)$ $[[90, 66, \geq3]]_5$ $[[30, 20, 3]]_5$ (ref.[17])
$[46, 23]$ 1, 22, 22, 1 1, 21, 1 1, 21, 1 $(69, 23^{85}, 3)$ $[[92, 78, \geq3]]_{23}$ $[[48, 40, \geq3]]_{23}$ (ref.[13])
$[31, 31]$ 1, 29, 1 1, 29, 1 1, 29, 1 $(62, 31^{87}, 3)$ $[[93, 81, \geq3]]_{31}$ $[[52, 44, \geq3]]_{31}$ (ref.[13])
$[47, 47]$ 1, 45, 1 1, 45, 1 1, 45, 1 $(94, 47^{135}, 3)$ $[[141,129, \geq3]]_{47}$ -
$[59, 59]$ 1, 57, 1 1, 57, 1 1, 57, 1 $(118, 59^{171}, 3)$ $[[177,165, \geq3]]_{59}$ -
[1]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[2]

Padmapani Seneviratne, Martianus Frederic Ezerman. New quantum codes from metacirculant graphs via self-dual additive $\mathbb{F}_4$-codes. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2021073

[3]

Martianus Frederic Ezerman, San Ling, Patrick Solé, Olfa Yemen. From skew-cyclic codes to asymmetric quantum codes. Advances in Mathematics of Communications, 2011, 5 (1) : 41-57. doi: 10.3934/amc.2011.5.41

[4]

W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2008, 2 (3) : 309-343. doi: 10.3934/amc.2008.2.309

[5]

W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2007, 1 (4) : 427-459. doi: 10.3934/amc.2007.1.427

[6]

Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039

[7]

Ram Krishna Verma, Om Prakash, Ashutosh Singh, Habibul Islam. New quantum codes from skew constacyclic codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021028

[8]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[9]

Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177

[10]

Tingting Wu, Jian Gao, Yun Gao, Fang-Wei Fu. $ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 641-657. doi: 10.3934/amc.2018038

[11]

Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011

[12]

Habibul Islam, Om Prakash, Patrick Solé. $ \mathbb{Z}_{4}\mathbb{Z}_{4}[u] $-additive cyclic and constacyclic codes. Advances in Mathematics of Communications, 2021, 15 (4) : 737-755. doi: 10.3934/amc.2020094

[13]

Upendra Kapshikar, Ayan Mahalanobis. Niederreiter cryptosystems using quasi-cyclic codes that resist quantum Fourier sampling. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021062

[14]

Lars Eirik Danielsen. Graph-based classification of self-dual additive codes over finite fields. Advances in Mathematics of Communications, 2009, 3 (4) : 329-348. doi: 10.3934/amc.2009.3.329

[15]

Ken Saito. Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs. Advances in Mathematics of Communications, 2019, 13 (2) : 213-220. doi: 10.3934/amc.2019014

[16]

W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357

[17]

Somphong Jitman, San Ling, Ekkasit Sangwisut. On self-dual cyclic codes of length $p^a$ over $GR(p^2,s)$. Advances in Mathematics of Communications, 2016, 10 (2) : 255-273. doi: 10.3934/amc.2016004

[18]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[19]

Sergio R. López-Permouth, Benigno R. Parra-Avila, Steve Szabo. Dual generalizations of the concept of cyclicity of codes. Advances in Mathematics of Communications, 2009, 3 (3) : 227-234. doi: 10.3934/amc.2009.3.227

[20]

Gustavo Terra Bastos, Reginaldo Palazzo Júnior, Marinês Guerreiro. Abelian non-cyclic orbit codes and multishot subspace codes. Advances in Mathematics of Communications, 2020, 14 (4) : 631-650. doi: 10.3934/amc.2020035

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (785)
  • HTML views (706)
  • Cited by (14)

Other articles
by authors

[Back to Top]