\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

New classes of strictly optimal low hit zone frequency hopping sequence sets

  • * Corresponding author: Hongyu Han

    * Corresponding author: Hongyu Han 

This work is supported in part by the National Science Foundation of China under Grants 61701331, 61801401, and in part by the Project of Sichuan Education Department under Grant 18ZB0496

Abstract / Introduction Full Text(HTML) Figure(1) / Table(1) Related Papers Cited by
  • Low hit zone frequency hopping sequences (LHZ FHSs) with favorable partial Hamming correlation properties are desirable in quasi-synchronous frequency hopping multiple-access systems. An LHZ FHS set is considered to be strictly optimal when it has optimal partial Hamming correlation for all correlation windows. In this study, an interleaved construction of new sets of strictly optimal LHZ FHSs is proposed. Strictly optimal LHZ FHS sets with new and flexible parameters are obtained by selecting suitable known optimal FHSs and appropriate shift sequences.

    Mathematics Subject Classification: Primary: 94A05; Secondary: 94B60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Maximum partial Hamming correlations of $ \mathcal{P} $ for the correlation window length $ L = 8 $ in Example 1

    Table 1.  New sets of strictly optimal LHZ FHSs

    Based on individual FHSs with strictly optimal partial Hamming autocorrelation $L_c$ $(RN, I, l, v-1, R\alpha)$ Maximum partial Hamming correlation for the correlation window length $L$ Constraints
    [2] $g$ $(Reg, I, g, v\!-\!1, Re)$ $\left\lceil\frac{L}{g}\right\rceil$ $R\geq2$, $Iv=N$, $\gcd(s, N)=1$,
    $\gcd((v\!+\!1)s^{-1}(\textrm{mod}\ N), L_c)\!=\!1$,
    $(v+1)Rs^{-1}\equiv1$(mod $N$), $R=s$(mod $v$)
    [7] $q\!+\!1$ $(R(q^2\!-\!1), I, q, v\!-\!1, R(q-1))$ $\left\lceil\frac{L}{q+1}\right\rceil$
    [27] $T$ $(R(q^n-1), I, q^{n-1}, v-1, R(q-1))$ $\left\lceil\frac{L}{T}\right\rceil$
    $g$ is any odd integer with the prime factor decomposition $g=p_1^{m_1}p_2^{m_2}\cdots p_k^{m_k}$; $e>1$, $e|gcd(p_1-1, p_2-1, \cdots, p_k-1)$; $q$ is a prime power and $T=\frac{q^n-1}{q-1}$.
     | Show Table
    DownLoad: CSV
  • [1] "Specification of the Bluetooth SysemsCore," Bluetooth Special Interest Group (SIG), 2003. Available from: http://www.bluetooth.org.
    [2] H. CaiZ. C. ZhouY. Yang and X. H. Tang, A new construction of frequency-hopping sequences with optimal partial Hamming correlation, IEEE Trans. Inform. Theory, 60 (2014), 5782-5790.  doi: 10.1109/TIT.2014.2332996.
    [3] H. H. Chen, "The Next Generation CDMA Technologies", John Wiley & Sons, London, 2007. doi: 10.1002/9780470022962.
    [4] J. H. Chung and K. Yang, New classes of optimal low-hit-zone frequency-hopping sequence sets by Cartesian product, IEEE Trans. Inform. Theory, 59 (2013), 726-732.  doi: 10.1109/TIT.2012.2213065.
    [5] J. H. ChungY. K. Han and K. Yang, New classes of optimal frequency-hopping sequences by interleaving techniques, IEEE Trans. Inform. Theory, 55 (2009), 5783-5791.  doi: 10.1109/TIT.2009.2032742.
    [6] C. DingR. Fuji-HaraY. FujiwaraM. Jimbo and M. Mishima, Sets of frequency hopping sequences: Bounds and optimal constructions, IEEE Trans. Inform. Theory, 55 (2009), 3297-3304.  doi: 10.1109/TIT.2009.2021366.
    [7] Y. C. EunS. Y. JinY. P. Hong and H. Y. Song, Frequency hopping sequences with optimal partial autocorrelation properties, IEEE Trans. Inform. Theory, 50 (2004), 2438-2442.  doi: 10.1109/TIT.2004.834792.
    [8] P. Z. Fan and M. Darnell, "Sequence Design for Communications Applications," John Wiley & Sons, London, 1996.
    [9] R. D. GaudenziC. Elia and R. Viola, Bandlimited quasi-synchronous CDMA: A novel satellite access technique for mobile and personal communication systems, IEEE J. Sel. Areas Commun., 10 (1992), 328-343.  doi: 10.1109/49.126984.
    [10] G. GeY. Miao and Z. Yao, Optimal frequency hopping sequences: Auto- and cross-correlation properties, IEEE Trans. Inform. Theory, 55 (2009), 867-879.  doi: 10.1109/TIT.2008.2009856.
    [11] G. Gong, Theory and applications of $q$-ary interleaved sequences, IEEE Trans. Inform. Theory, 41 (1995), 400-411.  doi: 10.1109/18.370141.
    [12] H. Y. Han, D. Y. Peng and X. Liu, On low-hit-zone frequency-hopping sequence sets with optimal partial Hamming correlation, in Sequences and Their Applications - SETA 2014, Lecture Notes in Comput. Sci., 8665, Springer, Cham, 2014,293-304. doi: 10.1007/978-3-319-12325-7_25.
    [13] H. Y. HanD. Y. Peng and U. Parampalli, New sets of optimal low-hit-zone frequency-hopping sequences based on $m$-sequences, Cryptogr. Commun., 9 (2017), 511-522.  doi: 10.1007/s12095-016-0192-7.
    [14] A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Information Theory, 20 (1974), 90-94.  doi: 10.1109/tit.1974.1055169.
    [15] W. P. Ma and S. H. Sun, New designs of frequency hopping sequences with low hit zone, Des. Codes Cryptogr., 60 (2011), 145-153.  doi: 10.1007/s10623-010-9422-8.
    [16] X. H. NiuD. Y. PengF. Liu and X. Liu, Lower bounds on the maximum partial correlations of frequency hopping sequence set with low hit zone, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 93-A (2010), 2227-2231.  doi: 10.1587/transfun.E93.A.2227.
    [17] X. H. NiuD. Y. Peng and Z. C. Zhou, Frequency/time hopping sequence sets with optimal partial Hamming correlation properties, Sci. China Inf. Sci., 55 (2012), 2207-2215.  doi: 10.1007/s11432-012-4620-9.
    [18] X. H. NiuD. Y. Peng and Z. C. Zhou, New classes of optimal frequency hopping sequences with low hit zone, Adv. Math. Commun., 7 (2013), 293-310.  doi: 10.3934/amc.2013.7.293.
    [19] D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, 50 (2004), 2149-2154.  doi: 10.1109/TIT.2004.833362.
    [20] D. Y. PengP. Z. Fan and M. H. Lee, Lower bounds on the periodic Hamming correlations of frequency hopping sequences with low hit zone, Sci. China Ser. F, 49 (2006), 208-218.  doi: 10.1007/s11432-006-0208-6.
    [21] M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, "Spread Spectrum Communications Handbook," McGraw-Hill, New York, NY, 2001.
    [22] C. Y. WangD. Y. PengH. Y. Han and L. M. N. Zhou, New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation, Sci. China Inf. Sci., 58 (2015), 1-15.  doi: 10.1109/TIT.2016.2551225.
    [23] X. N. Wang and P. Z. Fan, A class of frequency hopping sequences with no hit zone, in Proc. of the 4th International Conference on Parallel and Distributed Computing, Applications and Technologies, 2003,896-898. doi: 10.1109/PDCAT.2003.1236444.
    [24] S. ZhangJ. ZhangW. Zheng and H. So, Widely-linear complex-valued estimated-input LMS algorithm for bias-compensated adaptive filtering with noisy measurements, IEEE Trans. Signal Process., 67 (2019), 3592-3605.  doi: 10.1109/TSP.2019.2919412.
    [25] X. Y. ZengH. CaiX. H. Tang and Y. Yang, A class of optimal frequency hopping sequences with new parameters, IEEE Trans. Inform. Theory, 58 (2012), 4899-4907.  doi: 10.1109/TIT.2012.2195771.
    [26] Z. C. ZhouX. H. Tang and G. Gong, A new class of sequences with zero or low correlation zone based on interleaving technique, IEEE Trans. Inform. Theory, 54 (2008), 4267-4273.  doi: 10.1109/TIT.2008.928256.
    [27] Z. C. ZhouX. H. TangX. H. Niu and P. Udaya, New classes of frequency-hopping sequences with optimal partial correlation, IEEE Trans. Inform. Theory, 58 (2012), 453-458.  doi: 10.1109/TIT.2011.2167126.
  • 加载中

Figures(1)

Tables(1)

SHARE

Article Metrics

HTML views(2575) PDF downloads(386) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return