-
Previous Article
Designs from maximal subgroups and conjugacy classes of Ree groups
- AMC Home
- This Issue
-
Next Article
New classes of strictly optimal low hit zone frequency hopping sequence sets
Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs
1. | Department of Mathematics, University of Rijeka, Croatia |
2. | De Brún Centre for Mathematics, School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway |
In this paper we introduce the notion of orbit matrices of integer matrices such as Seidel and Laplacian matrices of some strongly regular graphs with respect to their permutation automorphism groups. We further show that under certain conditions these orbit matrices yield self-orthogonal codes over finite fields $ \mathbb{F}_q $, where $ q $ is a prime power and over finite rings $ \mathbb{Z}_m $. As a case study, we construct codes from orbit matrices of Seidel, Laplacian and signless Laplacian matrices of strongly regular graphs. In particular, we construct self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of the Higman-Sims and McLaughlin graphs.
References:
[1] |
M. Behbahani and C. Lam,
Strongly regular graphs with non-trivial automorphisms, Discrete Math., 311 (2011), 132-144.
doi: 10.1016/j.disc.2010.10.005. |
[2] |
W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125. |
[3] |
A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Results in Mathematics and Related Areas, 18, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-74341-2. |
[4] |
A. E. Brouwer, Strongly regular graphs, in Handbook of Combinatorial Designs, Chapman & Hall/CRC, Boca Raton, FL, 2007,852-868. |
[5] |
A. E. Brouwer, Parameters of strongly regular graphs, Available from: http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html. |
[6] |
A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012.
doi: 10.1007/978-1-4614-1939-6. |
[7] |
D. Crnković, R. Egan and A. Švob,
Orbit matrices of Hadamard matrices and related codes, Discrete Math., 341 (2018), 1199-1209.
doi: 10.1016/j.disc.2018.01.018. |
[8] |
D. Crnković, M. Maksimović, B. G. Rodrigues and S. Rukavina,
Self-orthogonal codes from the strongly regular graphs on up to 40 vertices, Adv. Math. Commun., 10 (2016), 555-582.
doi: 10.3934/amc.2016026. |
[9] |
D. Crnković, B. G. Rodrigues, S. Rukavina and L. Simčić,
Self-orthogonal codes from orbit matrices of 2-designs, Adv. Math. Commun., 7 (2013), 161-174.
doi: 10.3934/amc.2013.7.161. |
[10] |
S. T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017.
doi: 10.1007/978-3-319-59806-2. |
[11] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Available from: http://www.codetables.de. |
[12] |
W. H. Haemers, R. Peeters and J. M. van Rijckevorsel,
Binary codes of strongly regular graphs, Des. Codes Cryptogr., 17 (1999), 187-209.
doi: 10.1023/A:1026479210284. |
[13] |
W. H. Haemers and E. Spence,
Enumeration of cospectral graphs, European J. Combin., 25 (2004), 199-211.
doi: 10.1016/S0195-6698(03)00100-8. |
[14] |
M. Harada,
Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights, Adv. Math. Commun., 10 (2016), 695-706.
doi: 10.3934/amc.2016035. |
[15] |
M. Harada and V. Tonchev,
Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math., 264 (2003), 81-90.
doi: 10.1016/S0012-365X(02)00553-8. |
[16] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() ![]() |
[17] |
J. D. Key, T. P. McDonough and V. C. Mavron,
Improved partial permutation decoding for Reed-Muller codes, Discrete Math., 340 (2017), 722-728.
doi: 10.1016/j.disc.2016.11.031. |
[18] |
F. J. MacWilliams,
Permutation decoding of systematic codes, Bell System Tech. J., 43 (1964), 485-505.
doi: 10.1002/j.1538-7305.1964.tb04075.x. |
[19] |
E. Spence, Strongly regular graphs on at most 64 vertices, Available from: http://www.maths.gla.ac.uk/~es/srgraphs.php. |
[20] |
F. Szöllősi and P. R. J. Östergård,
Enumeration of Seidel matrices, European J. Combin., 69 (2018), 169-184.
doi: 10.1016/j.ejc.2017.10.009. |
[21] |
V. D. Tonchev, Combinatorial Configurations: Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, 40, John Wiley & Sons, Inc., New York, 1988. |
show all references
References:
[1] |
M. Behbahani and C. Lam,
Strongly regular graphs with non-trivial automorphisms, Discrete Math., 311 (2011), 132-144.
doi: 10.1016/j.disc.2010.10.005. |
[2] |
W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125. |
[3] |
A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Results in Mathematics and Related Areas, 18, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-74341-2. |
[4] |
A. E. Brouwer, Strongly regular graphs, in Handbook of Combinatorial Designs, Chapman & Hall/CRC, Boca Raton, FL, 2007,852-868. |
[5] |
A. E. Brouwer, Parameters of strongly regular graphs, Available from: http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html. |
[6] |
A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012.
doi: 10.1007/978-1-4614-1939-6. |
[7] |
D. Crnković, R. Egan and A. Švob,
Orbit matrices of Hadamard matrices and related codes, Discrete Math., 341 (2018), 1199-1209.
doi: 10.1016/j.disc.2018.01.018. |
[8] |
D. Crnković, M. Maksimović, B. G. Rodrigues and S. Rukavina,
Self-orthogonal codes from the strongly regular graphs on up to 40 vertices, Adv. Math. Commun., 10 (2016), 555-582.
doi: 10.3934/amc.2016026. |
[9] |
D. Crnković, B. G. Rodrigues, S. Rukavina and L. Simčić,
Self-orthogonal codes from orbit matrices of 2-designs, Adv. Math. Commun., 7 (2013), 161-174.
doi: 10.3934/amc.2013.7.161. |
[10] |
S. T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017.
doi: 10.1007/978-3-319-59806-2. |
[11] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Available from: http://www.codetables.de. |
[12] |
W. H. Haemers, R. Peeters and J. M. van Rijckevorsel,
Binary codes of strongly regular graphs, Des. Codes Cryptogr., 17 (1999), 187-209.
doi: 10.1023/A:1026479210284. |
[13] |
W. H. Haemers and E. Spence,
Enumeration of cospectral graphs, European J. Combin., 25 (2004), 199-211.
doi: 10.1016/S0195-6698(03)00100-8. |
[14] |
M. Harada,
Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights, Adv. Math. Commun., 10 (2016), 695-706.
doi: 10.3934/amc.2016035. |
[15] |
M. Harada and V. Tonchev,
Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math., 264 (2003), 81-90.
doi: 10.1016/S0012-365X(02)00553-8. |
[16] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() ![]() |
[17] |
J. D. Key, T. P. McDonough and V. C. Mavron,
Improved partial permutation decoding for Reed-Muller codes, Discrete Math., 340 (2017), 722-728.
doi: 10.1016/j.disc.2016.11.031. |
[18] |
F. J. MacWilliams,
Permutation decoding of systematic codes, Bell System Tech. J., 43 (1964), 485-505.
doi: 10.1002/j.1538-7305.1964.tb04075.x. |
[19] |
E. Spence, Strongly regular graphs on at most 64 vertices, Available from: http://www.maths.gla.ac.uk/~es/srgraphs.php. |
[20] |
F. Szöllősi and P. R. J. Östergård,
Enumeration of Seidel matrices, European J. Combin., 69 (2018), 169-184.
doi: 10.1016/j.ejc.2017.10.009. |
[21] |
V. D. Tonchev, Combinatorial Configurations: Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, 40, John Wiley & Sons, Inc., New York, 1988. |
Graph | |
||
2880 | |||
576 | |||
48 | |||
312 | |||
124800 | |||
Graph | |
||
2880 | |||
576 | |||
48 | |||
312 | |||
124800 | |||
|
|||
80 | |||
2880 |
|
|||
80 | |||
2880 |
|
|||
2880 | |||
2903040 | |||
2903040 | |||
17280 | |||
5184 | |||
768 |
|
|||
2880 | |||
2903040 | |||
2903040 | |||
17280 | |||
5184 | |||
768 |
|
|||
10 | |||
103680 | |||
10368 | |||
5184 | |||
864 | |||
96 |
|
|||
10 | |||
103680 | |||
10368 | |||
5184 | |||
864 | |||
96 |
|
|||
1036800 | |||
56448 | |||
3932160 | |||
1920 | |||
336 | |||
240 | |||
11520 | |||
36864 | |||
69120 | |||
49152 | |||
17280 | |||
1440 | |||
393216 | |||
3072 | |||
115200 | |||
91729428480 |
|
|||
1036800 | |||
56448 | |||
3932160 | |||
1920 | |||
336 | |||
240 | |||
11520 | |||
36864 | |||
69120 | |||
49152 | |||
17280 | |||
1440 | |||
393216 | |||
3072 | |||
115200 | |||
91729428480 |
|
|||
|
|||
|
|||
1920 | |||
960 |
|
|||
1920 | |||
960 |
|
|||
|
|||
Graph | Type | ||
2, 8, 4 | Ⅱ | ||
2, 8, 4 | Ⅱ | ||
2, 8, 4 | Ⅱ | ||
2, 8, 4 | Ⅰ | ||
2, 8, 4 | Ⅱ | ||
2, 8, 4 | Ⅱ | ||
2, 8, 4 | Ⅱ | ||
2, 8, 4 | Ⅰ | ||
1, 4, 2 | Ⅰ |
Graph | Type | ||
2, 8, 4 | Ⅱ | ||
2, 8, 4 | Ⅱ | ||
2, 8, 4 | Ⅱ | ||
2, 8, 4 | Ⅰ | ||
2, 8, 4 | Ⅱ | ||
2, 8, 4 | Ⅱ | ||
2, 8, 4 | Ⅱ | ||
2, 8, 4 | Ⅰ | ||
1, 4, 2 | Ⅰ |
[1] |
Dean Crnković, Marija Maksimović, Bernardo Gabriel Rodrigues, Sanja Rukavina. Self-orthogonal codes from the strongly regular graphs on up to 40 vertices. Advances in Mathematics of Communications, 2016, 10 (3) : 555-582. doi: 10.3934/amc.2016026 |
[2] |
K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026 |
[3] |
Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161 |
[4] |
Peter Giesl. On a matrix-valued PDE characterizing a contraction metric for a periodic orbit. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4839-4865. doi: 10.3934/dcdsb.2020315 |
[5] |
Cristian Dobre. Mathematical properties of the regular *-representation of matrix $*$-algebras with applications to semidefinite programming. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 367-378. doi: 10.3934/naco.2013.3.367 |
[6] |
Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems and Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357 |
[7] |
Dean Crnković, Sanja Rukavina, Andrea Švob. Self-orthogonal codes from equitable partitions of distance-regular graphs. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022014 |
[8] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[9] |
Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415 |
[10] |
Meijuan Shang, Yanan Liu, Lingchen Kong, Xianchao Xiu, Ying Yang. Nonconvex mixed matrix minimization. Mathematical Foundations of Computing, 2019, 2 (2) : 107-126. doi: 10.3934/mfc.2019009 |
[11] |
Paul Skerritt, Cornelia Vizman. Dual pairs for matrix groups. Journal of Geometric Mechanics, 2019, 11 (2) : 255-275. doi: 10.3934/jgm.2019014 |
[12] |
Adel Alahmadi, Hamed Alsulami, S.K. Jain, Efim Zelmanov. On matrix wreath products of algebras. Electronic Research Announcements, 2017, 24: 78-86. doi: 10.3934/era.2017.24.009 |
[13] |
Qingshan You, Qun Wan, Yipeng Liu. A short note on strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems and Imaging, 2013, 7 (1) : 305-306. doi: 10.3934/ipi.2013.7.305 |
[14] |
Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015 |
[15] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[16] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[17] |
Henry Adams, Lara Kassab, Deanna Needell. An adaptation for iterative structured matrix completion. Foundations of Data Science, 2021, 3 (4) : 769-791. doi: 10.3934/fods.2021028 |
[18] |
Maria Bortos, Joe Gildea, Abidin Kaya, Adrian Korban, Alexander Tylyshchak. New self-dual codes of length 68 from a $ 2 \times 2 $ block matrix construction and group rings. Advances in Mathematics of Communications, 2022, 16 (2) : 269-284. doi: 10.3934/amc.2020111 |
[19] |
Crnković Dean, Vedrana Mikulić Crnković, Bernardo G. Rodrigues. On self-orthogonal designs and codes related to Held's simple group. Advances in Mathematics of Communications, 2018, 12 (3) : 607-628. doi: 10.3934/amc.2018036 |
[20] |
Leetika Kathuria, Madhu Raka. Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless. Advances in Mathematics of Communications, 2012, 6 (4) : 499-503. doi: 10.3934/amc.2012.6.499 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]