November  2020, 14(4): 591-602. doi: 10.3934/amc.2020032

Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs

1. 

Department of Mathematics, University of Rijeka, Croatia

2. 

De Brún Centre for Mathematics, School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway

* Corresponding author: A. Švob

Received  April 2018 Revised  April 2019 Published  November 2019

Fund Project: D. Crnković and A. Švob were supported by Croatian Science Foundation under the project 6732. R. Egan was supported by the Irish Research Council (Government of Ireland Postdoctoral Fellowship, GOIPD/2018/304)

In this paper we introduce the notion of orbit matrices of integer matrices such as Seidel and Laplacian matrices of some strongly regular graphs with respect to their permutation automorphism groups. We further show that under certain conditions these orbit matrices yield self-orthogonal codes over finite fields $ \mathbb{F}_q $, where $ q $ is a prime power and over finite rings $ \mathbb{Z}_m $. As a case study, we construct codes from orbit matrices of Seidel, Laplacian and signless Laplacian matrices of strongly regular graphs. In particular, we construct self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of the Higman-Sims and McLaughlin graphs.

Citation: Dean Crnković, Ronan Egan, Andrea Švob. Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in Mathematics of Communications, 2020, 14 (4) : 591-602. doi: 10.3934/amc.2020032
References:
[1]

M. Behbahani and C. Lam, Strongly regular graphs with non-trivial automorphisms, Discrete Math., 311 (2011), 132-144.  doi: 10.1016/j.disc.2010.10.005.  Google Scholar

[2]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[3]

A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Results in Mathematics and Related Areas, 18, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-74341-2.  Google Scholar

[4]

A. E. Brouwer, Strongly regular graphs, in Handbook of Combinatorial Designs, Chapman & Hall/CRC, Boca Raton, FL, 2007,852-868.  Google Scholar

[5]

A. E. Brouwer, Parameters of strongly regular graphs, Available from: http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html. Google Scholar

[6]

A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012. doi: 10.1007/978-1-4614-1939-6.  Google Scholar

[7]

D. CrnkovićR. Egan and A. Švob, Orbit matrices of Hadamard matrices and related codes, Discrete Math., 341 (2018), 1199-1209.  doi: 10.1016/j.disc.2018.01.018.  Google Scholar

[8]

D. CrnkovićM. MaksimovićB. G. Rodrigues and S. Rukavina, Self-orthogonal codes from the strongly regular graphs on up to 40 vertices, Adv. Math. Commun., 10 (2016), 555-582.  doi: 10.3934/amc.2016026.  Google Scholar

[9]

D. CrnkovićB. G. RodriguesS. Rukavina and L. Simčić, Self-orthogonal codes from orbit matrices of 2-designs, Adv. Math. Commun., 7 (2013), 161-174.  doi: 10.3934/amc.2013.7.161.  Google Scholar

[10]

S. T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-59806-2.  Google Scholar

[11]

M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Available from: http://www.codetables.de. Google Scholar

[12]

W. H. HaemersR. Peeters and J. M. van Rijckevorsel, Binary codes of strongly regular graphs, Des. Codes Cryptogr., 17 (1999), 187-209.  doi: 10.1023/A:1026479210284.  Google Scholar

[13]

W. H. Haemers and E. Spence, Enumeration of cospectral graphs, European J. Combin., 25 (2004), 199-211.  doi: 10.1016/S0195-6698(03)00100-8.  Google Scholar

[14]

M. Harada, Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights, Adv. Math. Commun., 10 (2016), 695-706.  doi: 10.3934/amc.2016035.  Google Scholar

[15]

M. Harada and V. Tonchev, Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math., 264 (2003), 81-90.  doi: 10.1016/S0012-365X(02)00553-8.  Google Scholar

[16] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[17]

J. D. KeyT. P. McDonough and V. C. Mavron, Improved partial permutation decoding for Reed-Muller codes, Discrete Math., 340 (2017), 722-728.  doi: 10.1016/j.disc.2016.11.031.  Google Scholar

[18]

F. J. MacWilliams, Permutation decoding of systematic codes, Bell System Tech. J., 43 (1964), 485-505.  doi: 10.1002/j.1538-7305.1964.tb04075.x.  Google Scholar

[19]

E. Spence, Strongly regular graphs on at most 64 vertices, Available from: http://www.maths.gla.ac.uk/~es/srgraphs.php. Google Scholar

[20]

F. Szöllősi and P. R. J. Östergård, Enumeration of Seidel matrices, European J. Combin., 69 (2018), 169-184.  doi: 10.1016/j.ejc.2017.10.009.  Google Scholar

[21]

V. D. Tonchev, Combinatorial Configurations: Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, 40, John Wiley & Sons, Inc., New York, 1988.  Google Scholar

show all references

References:
[1]

M. Behbahani and C. Lam, Strongly regular graphs with non-trivial automorphisms, Discrete Math., 311 (2011), 132-144.  doi: 10.1016/j.disc.2010.10.005.  Google Scholar

[2]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[3]

A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Results in Mathematics and Related Areas, 18, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-74341-2.  Google Scholar

[4]

A. E. Brouwer, Strongly regular graphs, in Handbook of Combinatorial Designs, Chapman & Hall/CRC, Boca Raton, FL, 2007,852-868.  Google Scholar

[5]

A. E. Brouwer, Parameters of strongly regular graphs, Available from: http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html. Google Scholar

[6]

A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012. doi: 10.1007/978-1-4614-1939-6.  Google Scholar

[7]

D. CrnkovićR. Egan and A. Švob, Orbit matrices of Hadamard matrices and related codes, Discrete Math., 341 (2018), 1199-1209.  doi: 10.1016/j.disc.2018.01.018.  Google Scholar

[8]

D. CrnkovićM. MaksimovićB. G. Rodrigues and S. Rukavina, Self-orthogonal codes from the strongly regular graphs on up to 40 vertices, Adv. Math. Commun., 10 (2016), 555-582.  doi: 10.3934/amc.2016026.  Google Scholar

[9]

D. CrnkovićB. G. RodriguesS. Rukavina and L. Simčić, Self-orthogonal codes from orbit matrices of 2-designs, Adv. Math. Commun., 7 (2013), 161-174.  doi: 10.3934/amc.2013.7.161.  Google Scholar

[10]

S. T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-59806-2.  Google Scholar

[11]

M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Available from: http://www.codetables.de. Google Scholar

[12]

W. H. HaemersR. Peeters and J. M. van Rijckevorsel, Binary codes of strongly regular graphs, Des. Codes Cryptogr., 17 (1999), 187-209.  doi: 10.1023/A:1026479210284.  Google Scholar

[13]

W. H. Haemers and E. Spence, Enumeration of cospectral graphs, European J. Combin., 25 (2004), 199-211.  doi: 10.1016/S0195-6698(03)00100-8.  Google Scholar

[14]

M. Harada, Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights, Adv. Math. Commun., 10 (2016), 695-706.  doi: 10.3934/amc.2016035.  Google Scholar

[15]

M. Harada and V. Tonchev, Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math., 264 (2003), 81-90.  doi: 10.1016/S0012-365X(02)00553-8.  Google Scholar

[16] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[17]

J. D. KeyT. P. McDonough and V. C. Mavron, Improved partial permutation decoding for Reed-Muller codes, Discrete Math., 340 (2017), 722-728.  doi: 10.1016/j.disc.2016.11.031.  Google Scholar

[18]

F. J. MacWilliams, Permutation decoding of systematic codes, Bell System Tech. J., 43 (1964), 485-505.  doi: 10.1002/j.1538-7305.1964.tb04075.x.  Google Scholar

[19]

E. Spence, Strongly regular graphs on at most 64 vertices, Available from: http://www.maths.gla.ac.uk/~es/srgraphs.php. Google Scholar

[20]

F. Szöllősi and P. R. J. Östergård, Enumeration of Seidel matrices, European J. Combin., 69 (2018), 169-184.  doi: 10.1016/j.ejc.2017.10.009.  Google Scholar

[21]

V. D. Tonchev, Combinatorial Configurations: Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, 40, John Wiley & Sons, Inc., New York, 1988.  Google Scholar

Table 1.  Self-orthogonal codes constructed from Seidel matrices of SRGs
Graph $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ \mathcal{G}_1^1 $ $ [10,4,6]_3* $ $ [10,6,4]_3* $ 2880
$ \mathcal{G}_2^1 $ $ [26,11,8]_5 $ $ [26,15,6]_5 $ 576
$ \mathcal{G}_2^3 $ $ [26,12,8]_5 $ $ [26,14,6]_5 $ 48
$ \mathcal{G}_2^6 $ $ [26,12,8]_5 $ $ [26,14,6]_5 $ 312
$ \mathcal{G}_2^8 $ $ [26,9,14]_5* $ $ [28,17,6]_5 $ 124800
$ \mathcal{G}_3^1 $ $ [28,7,12]_3 $ $ [28,21,4]_3* $ $ 2^{10}\cdot 3^4\cdot 5^1 \cdot 7^1 $
Graph $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ \mathcal{G}_1^1 $ $ [10,4,6]_3* $ $ [10,6,4]_3* $ 2880
$ \mathcal{G}_2^1 $ $ [26,11,8]_5 $ $ [26,15,6]_5 $ 576
$ \mathcal{G}_2^3 $ $ [26,12,8]_5 $ $ [26,14,6]_5 $ 48
$ \mathcal{G}_2^6 $ $ [26,12,8]_5 $ $ [26,14,6]_5 $ 312
$ \mathcal{G}_2^8 $ $ [26,9,14]_5* $ $ [28,17,6]_5 $ 124800
$ \mathcal{G}_3^1 $ $ [28,7,12]_3 $ $ [28,21,4]_3* $ $ 2^{10}\cdot 3^4\cdot 5^1 \cdot 7^1 $
Table 2.  Self-orthogonal codes constructed from orbit matrices of the Seidel matrix of $ \mathcal{G}_1 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{1}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_3 $ $ [69,21,15]_3 $ $ [69,48,5]_3 $ 80
$ Z_{13} $ $ [16,4,9]_3* $ $ [16,12,1]_3 $ 2880
$ G \leq \mathrm{Aut}({\mathcal{G}_{1}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_3 $ $ [69,21,15]_3 $ $ [69,48,5]_3 $ 80
$ Z_{13} $ $ [16,4,9]_3* $ $ [16,12,1]_3 $ 2880
Table 3.  Self-orthogonal codes constructed from orbit matrices of the Seidel matrix of $ \mathcal{G}_2 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{2}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_3 $ $ [10,4,6]_3* $ $ [10,6,4]_3* $ 2880
$ Z_3 $ $ [36,14,12]_3 $ $ [36,22,6]_3 $ 2903040
$ Z_3 $ $ [28,7,12]_3 $ $ [28,21,4]_3* $ 2903040
$ Z_3 $ $ [42,15,12]_3 $ $ [42,27,4]_3 $ 17280
$ Z_3 $ $ [45,15,12]_3 $ $ [45,30,4]_3 $ 5184
$ Z_{17} $ $ [8,2,6]_3* $ $ [8,6,2]_3* $ 768
$ G \leq \mathrm{Aut}({\mathcal{G}_{2}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_3 $ $ [10,4,6]_3* $ $ [10,6,4]_3* $ 2880
$ Z_3 $ $ [36,14,12]_3 $ $ [36,22,6]_3 $ 2903040
$ Z_3 $ $ [28,7,12]_3 $ $ [28,21,4]_3* $ 2903040
$ Z_3 $ $ [42,15,12]_3 $ $ [42,27,4]_3 $ 17280
$ Z_3 $ $ [45,15,12]_3 $ $ [45,30,4]_3 $ 5184
$ Z_{17} $ $ [8,2,6]_3* $ $ [8,6,2]_3* $ 768
Table 4.  Self-orthogonal codes constructed from orbit matrices of the Laplacian matrix of $ \mathcal{G}_3 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{3}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_3 $ $ [12,2,3]_3 $ $ [12,10,2]_3* $ $ 2^{10}\cdot 3^5\cdot 5\cdot 7 $
$ Z_3 $ $ [15,5,6]_3 $ $ [15,10,3]_3 $ 10
$ Z_3 $ $ [40,10,18]_3 $ $ [40,30,4]_3 $ $ 2^9\cdot 3^6\cdot 5\cdot 13 $
$ Z_3 $ $ [45,15,12]_3 $ $ [45,30,6]_3 $ 103680
$ Z_3 $ $ [51,13,12]_3 $ $ [51,38,4]_3 $ 10368
$ Z_3 $ $ [52,13,12]_3 $ $ [52,39,3]_3 $ 5184
$ Z_3 $ $ [53,14,12]_3 $ $ [53,39,4]_3 $ 864
$ Z_5 $ $ [33,9,12]_3 $ $ [33,24,2]_3 $ 96
$ G \leq \mathrm{Aut}({\mathcal{G}_{3}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_3 $ $ [12,2,3]_3 $ $ [12,10,2]_3* $ $ 2^{10}\cdot 3^5\cdot 5\cdot 7 $
$ Z_3 $ $ [15,5,6]_3 $ $ [15,10,3]_3 $ 10
$ Z_3 $ $ [40,10,18]_3 $ $ [40,30,4]_3 $ $ 2^9\cdot 3^6\cdot 5\cdot 13 $
$ Z_3 $ $ [45,15,12]_3 $ $ [45,30,6]_3 $ 103680
$ Z_3 $ $ [51,13,12]_3 $ $ [51,38,4]_3 $ 10368
$ Z_3 $ $ [52,13,12]_3 $ $ [52,39,3]_3 $ 5184
$ Z_3 $ $ [53,14,12]_3 $ $ [53,39,4]_3 $ 864
$ Z_5 $ $ [33,9,12]_3 $ $ [33,24,2]_3 $ 96
Table 5.  Self-orthogonal codes constructed from orbit matrices of Laplace matrix of $ \mathcal{G}_4 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{4}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_2 $ $ [12,2,6]_2 $ $ [12,10,2]_2* $ 1036800
$ Z_2 $ $ [14,7,4]_2* $ $ [14,7,4]_2* $ 56448
$ Z_2 $ $ [40,14,8]_2 $ $ [40,26,4]_2 $ 3932160
$ Z_2 $ $ [120,24,24]_2 $ $ [120,96,5]_2 $ 1920
$ Z_2 $ $ [133,27,24]_2 $ $ [133,106,6]_2 $ 336
$ Z_2 $ $ [134,30,24]_2 $ $ [134,104,5]_2 $ 240
$ Z_4 $ $ [16,6,6]_2* $ $ [16,10,4]_2* $ 11520
$ Z_4 $ $ [18,3,6]_2 $ $ [18,15,2]_2* $ $ 2^{13}\cdot 3^{7}\cdot 5^3 $
$ Z_4 $ $ [18,4,8]_2* $ $ [18,14,2]_2* $ 36864
$ Z_4 $ $ [36,6,8]_2 $ $ [36,30,2]_2 $ $ 2^{31}\cdot 3^{13} $
$ Z_4 $ $ [48,8,16_2 $ $ [48,40,4]_2* $ 69120
$ Z_4 $ $ [60,12,12]_2 $ $ [60,48,4]_2 $ 49152
$ Z_4 $ $ [61,13,16]_2 $ $ [61,48,4]_2 $ 17280
$ Z_5 $ $ [56,10,16]_2 $ $ [56,46,2]_2 $ 1440
$ Z_7 $ $ [40,8,8]_2 $ $ [40,32,2]_2 $ 393216
$ Z_7 $ $ [40,6,14]_5 $ $ [40,34,2]_5 $ 3072
$ Z_5 $ $ [56,8,20]_5 $ $ [56,48,2]_5 $ 115200
$ Z_5 $ $ [54,8,20]_5 $ $ [56,48,2]_5 $ 91729428480
$ G \leq \mathrm{Aut}({\mathcal{G}_{4}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_2 $ $ [12,2,6]_2 $ $ [12,10,2]_2* $ 1036800
$ Z_2 $ $ [14,7,4]_2* $ $ [14,7,4]_2* $ 56448
$ Z_2 $ $ [40,14,8]_2 $ $ [40,26,4]_2 $ 3932160
$ Z_2 $ $ [120,24,24]_2 $ $ [120,96,5]_2 $ 1920
$ Z_2 $ $ [133,27,24]_2 $ $ [133,106,6]_2 $ 336
$ Z_2 $ $ [134,30,24]_2 $ $ [134,104,5]_2 $ 240
$ Z_4 $ $ [16,6,6]_2* $ $ [16,10,4]_2* $ 11520
$ Z_4 $ $ [18,3,6]_2 $ $ [18,15,2]_2* $ $ 2^{13}\cdot 3^{7}\cdot 5^3 $
$ Z_4 $ $ [18,4,8]_2* $ $ [18,14,2]_2* $ 36864
$ Z_4 $ $ [36,6,8]_2 $ $ [36,30,2]_2 $ $ 2^{31}\cdot 3^{13} $
$ Z_4 $ $ [48,8,16_2 $ $ [48,40,4]_2* $ 69120
$ Z_4 $ $ [60,12,12]_2 $ $ [60,48,4]_2 $ 49152
$ Z_4 $ $ [61,13,16]_2 $ $ [61,48,4]_2 $ 17280
$ Z_5 $ $ [56,10,16]_2 $ $ [56,46,2]_2 $ 1440
$ Z_7 $ $ [40,8,8]_2 $ $ [40,32,2]_2 $ 393216
$ Z_7 $ $ [40,6,14]_5 $ $ [40,34,2]_5 $ 3072
$ Z_5 $ $ [56,8,20]_5 $ $ [56,48,2]_5 $ 115200
$ Z_5 $ $ [54,8,20]_5 $ $ [56,48,2]_5 $ 91729428480
Table 6.  Self-orthogonal codes constructed from orbit matrices of the signless Laplacian matrix of $ \mathcal{G}_5 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{5}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_2 $ $ [16,3,8]_2* $ $ [16,13,2]_2* $ $ 2^{15}\cdot 3^5 $
$ Z_2 $ $ [32,5,16]_2* $ $ [32,27,2]_2* $ $ 2^{26}\cdot 3^2\cdot 5^1\cdot 7^1 $
$ Z_2 $ $ [40,5,16]_2 $ $ [40,35,2]_2* $ $ 2^{34}\cdot 3^{12}\cdot 5^1 $
$ Z_2 $ $ [60,3,32]_2 $ $ [60,57,2]_2 $ $ 2^{55}\cdot 3^{18}\cdot 5^8\cdot 7^7\cdot 11^1 $
$ Z_2 $ $ [64,4,32]_2* $ $ [64,60,2]_2* $ $ 2^{55}\cdot 3^{17}\cdot 5^1\cdot 7^2 $
$ Z_2 $ $ [64,7,32]_2* $ $ [64,57,4]_2* $ $ 2^{21}\cdot 3^4\cdot 5^1\cdot 7^2\cdot 31^1 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{5}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_2 $ $ [16,3,8]_2* $ $ [16,13,2]_2* $ $ 2^{15}\cdot 3^5 $
$ Z_2 $ $ [32,5,16]_2* $ $ [32,27,2]_2* $ $ 2^{26}\cdot 3^2\cdot 5^1\cdot 7^1 $
$ Z_2 $ $ [40,5,16]_2 $ $ [40,35,2]_2* $ $ 2^{34}\cdot 3^{12}\cdot 5^1 $
$ Z_2 $ $ [60,3,32]_2 $ $ [60,57,2]_2 $ $ 2^{55}\cdot 3^{18}\cdot 5^8\cdot 7^7\cdot 11^1 $
$ Z_2 $ $ [64,4,32]_2* $ $ [64,60,2]_2* $ $ 2^{55}\cdot 3^{17}\cdot 5^1\cdot 7^2 $
$ Z_2 $ $ [64,7,32]_2* $ $ [64,57,4]_2* $ $ 2^{21}\cdot 3^4\cdot 5^1\cdot 7^2\cdot 31^1 $
Table 7.  Self-orthogonal codes constructed from orbit matrices of the Seidel matrix of $ \mathcal{G}_6 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{6}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_5 $ $ [19,4,10]_5 $ $ [19,15,2]_5 $ 1920
$ Z_5 $ $ [20,3,10]_5 $ $ [20,17,2]_5 $ $ 2^{17}\cdot 3^5\cdot 5^4 $
$ Z_5 $ $ [20,4,14]_5* $ $ [20,16,4]_5* $ 960
$ G \leq \mathrm{Aut}({\mathcal{G}_{6}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_5 $ $ [19,4,10]_5 $ $ [19,15,2]_5 $ 1920
$ Z_5 $ $ [20,3,10]_5 $ $ [20,17,2]_5 $ $ 2^{17}\cdot 3^5\cdot 5^4 $
$ Z_5 $ $ [20,4,14]_5* $ $ [20,16,4]_5* $ 960
Table 8.  Self-orthogonal codes constructed from orbit matrices of the Laplacian matrix of $ \mathcal{G}_7 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{7}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_5 $ $ [54,4,20]_5 $ $ [54,50,2]_5 $ $ 2^{24}\cdot 3^{7}\cdot 5^{1} $
$ Z_5 $ $ [55,3,20]_5 $ $ [55,52,2]_5* $ $ 2^{44}\cdot 3^{17}\cdot 5^{12}\cdot 7^3\cdot 11^2 \cdot 13\cdot 17\cdot 19\cdot 23 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{7}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_5 $ $ [54,4,20]_5 $ $ [54,50,2]_5 $ $ 2^{24}\cdot 3^{7}\cdot 5^{1} $
$ Z_5 $ $ [55,3,20]_5 $ $ [55,52,2]_5* $ $ 2^{44}\cdot 3^{17}\cdot 5^{12}\cdot 7^3\cdot 11^2 \cdot 13\cdot 17\cdot 19\cdot 23 $
Table 9.  Self-dual codes over $ \mathbb{Z}_4 $ constructed from orbit matrices of signless Laplacian matrices of SRGs $ \mathcal{G}_5 $ and $ \mathcal{G}_8 $
Graph $ C $ $ d_H(C) $, $ d_E(C) $, $ d_L(C) $ Type
$ \mathcal{G}_5 $ $ ((8,4^1 2^{6})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((16,4^3 2^{10})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((32,4^5 2^{22})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((36,4^1 2^{34})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((40,4^5 2^{30})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((24,4^1 2^{22})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((24,4^5 2^{14})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((28,4^1 2^{26})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((30,4^0 2^{30})) $ 1, 4, 2
Graph $ C $ $ d_H(C) $, $ d_E(C) $, $ d_L(C) $ Type
$ \mathcal{G}_5 $ $ ((8,4^1 2^{6})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((16,4^3 2^{10})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((32,4^5 2^{22})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((36,4^1 2^{34})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((40,4^5 2^{30})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((24,4^1 2^{22})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((24,4^5 2^{14})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((28,4^1 2^{26})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((30,4^0 2^{30})) $ 1, 4, 2
[1]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[2]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[3]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375

[4]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[5]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[6]

Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074

[7]

Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006

[8]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[9]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[10]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1025-1038. doi: 10.3934/cpaa.2021004

[11]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[12]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[13]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[14]

Fuzhi Li, Dongmei Xu. Regular dynamics for stochastic Fitzhugh-Nagumo systems with additive noise on thin domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3517-3542. doi: 10.3934/dcdsb.2020244

[15]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[16]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[17]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[18]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[19]

Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077

[20]

Wei Wang, Yang Shen, Linyi Qian, Zhixin Yang. Hedging strategy for unit-linked life insurance contracts with self-exciting jump clustering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021072

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (167)
  • HTML views (524)
  • Cited by (0)

Other articles
by authors

[Back to Top]