doi: 10.3934/amc.2020032

Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs

1. 

Department of Mathematics, University of Rijeka, Croatia

2. 

De Brún Centre for Mathematics, School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway

* Corresponding author: A. Švob

Received  April 2018 Revised  April 2019 Published  November 2019

Fund Project: D. Crnković and A. Švob were supported by Croatian Science Foundation under the project 6732. R. Egan was supported by the Irish Research Council (Government of Ireland Postdoctoral Fellowship, GOIPD/2018/304)

In this paper we introduce the notion of orbit matrices of integer matrices such as Seidel and Laplacian matrices of some strongly regular graphs with respect to their permutation automorphism groups. We further show that under certain conditions these orbit matrices yield self-orthogonal codes over finite fields $ \mathbb{F}_q $, where $ q $ is a prime power and over finite rings $ \mathbb{Z}_m $. As a case study, we construct codes from orbit matrices of Seidel, Laplacian and signless Laplacian matrices of strongly regular graphs. In particular, we construct self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of the Higman-Sims and McLaughlin graphs.

Citation: Dean Crnković, Ronan Egan, Andrea Švob. Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in Mathematics of Communications, doi: 10.3934/amc.2020032
References:
[1]

M. Behbahani and C. Lam, Strongly regular graphs with non-trivial automorphisms, Discrete Math., 311 (2011), 132-144.  doi: 10.1016/j.disc.2010.10.005.  Google Scholar

[2]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[3]

A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Results in Mathematics and Related Areas, 18, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-74341-2.  Google Scholar

[4]

A. E. Brouwer, Strongly regular graphs, in Handbook of Combinatorial Designs, Chapman & Hall/CRC, Boca Raton, FL, 2007,852-868.  Google Scholar

[5]

A. E. Brouwer, Parameters of strongly regular graphs, Available from: http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html. Google Scholar

[6]

A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012. doi: 10.1007/978-1-4614-1939-6.  Google Scholar

[7]

D. CrnkovićR. Egan and A. Švob, Orbit matrices of Hadamard matrices and related codes, Discrete Math., 341 (2018), 1199-1209.  doi: 10.1016/j.disc.2018.01.018.  Google Scholar

[8]

D. CrnkovićM. MaksimovićB. G. Rodrigues and S. Rukavina, Self-orthogonal codes from the strongly regular graphs on up to 40 vertices, Adv. Math. Commun., 10 (2016), 555-582.  doi: 10.3934/amc.2016026.  Google Scholar

[9]

D. CrnkovićB. G. RodriguesS. Rukavina and L. Simčić, Self-orthogonal codes from orbit matrices of 2-designs, Adv. Math. Commun., 7 (2013), 161-174.  doi: 10.3934/amc.2013.7.161.  Google Scholar

[10]

S. T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-59806-2.  Google Scholar

[11]

M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Available from: http://www.codetables.de. Google Scholar

[12]

W. H. HaemersR. Peeters and J. M. van Rijckevorsel, Binary codes of strongly regular graphs, Des. Codes Cryptogr., 17 (1999), 187-209.  doi: 10.1023/A:1026479210284.  Google Scholar

[13]

W. H. Haemers and E. Spence, Enumeration of cospectral graphs, European J. Combin., 25 (2004), 199-211.  doi: 10.1016/S0195-6698(03)00100-8.  Google Scholar

[14]

M. Harada, Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights, Adv. Math. Commun., 10 (2016), 695-706.  doi: 10.3934/amc.2016035.  Google Scholar

[15]

M. Harada and V. Tonchev, Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math., 264 (2003), 81-90.  doi: 10.1016/S0012-365X(02)00553-8.  Google Scholar

[16] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[17]

J. D. KeyT. P. McDonough and V. C. Mavron, Improved partial permutation decoding for Reed-Muller codes, Discrete Math., 340 (2017), 722-728.  doi: 10.1016/j.disc.2016.11.031.  Google Scholar

[18]

F. J. MacWilliams, Permutation decoding of systematic codes, Bell System Tech. J., 43 (1964), 485-505.  doi: 10.1002/j.1538-7305.1964.tb04075.x.  Google Scholar

[19]

E. Spence, Strongly regular graphs on at most 64 vertices, Available from: http://www.maths.gla.ac.uk/~es/srgraphs.php. Google Scholar

[20]

F. Szöllősi and P. R. J. Östergård, Enumeration of Seidel matrices, European J. Combin., 69 (2018), 169-184.  doi: 10.1016/j.ejc.2017.10.009.  Google Scholar

[21]

V. D. Tonchev, Combinatorial Configurations: Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, 40, John Wiley & Sons, Inc., New York, 1988.  Google Scholar

show all references

References:
[1]

M. Behbahani and C. Lam, Strongly regular graphs with non-trivial automorphisms, Discrete Math., 311 (2011), 132-144.  doi: 10.1016/j.disc.2010.10.005.  Google Scholar

[2]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[3]

A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Results in Mathematics and Related Areas, 18, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-74341-2.  Google Scholar

[4]

A. E. Brouwer, Strongly regular graphs, in Handbook of Combinatorial Designs, Chapman & Hall/CRC, Boca Raton, FL, 2007,852-868.  Google Scholar

[5]

A. E. Brouwer, Parameters of strongly regular graphs, Available from: http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html. Google Scholar

[6]

A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012. doi: 10.1007/978-1-4614-1939-6.  Google Scholar

[7]

D. CrnkovićR. Egan and A. Švob, Orbit matrices of Hadamard matrices and related codes, Discrete Math., 341 (2018), 1199-1209.  doi: 10.1016/j.disc.2018.01.018.  Google Scholar

[8]

D. CrnkovićM. MaksimovićB. G. Rodrigues and S. Rukavina, Self-orthogonal codes from the strongly regular graphs on up to 40 vertices, Adv. Math. Commun., 10 (2016), 555-582.  doi: 10.3934/amc.2016026.  Google Scholar

[9]

D. CrnkovićB. G. RodriguesS. Rukavina and L. Simčić, Self-orthogonal codes from orbit matrices of 2-designs, Adv. Math. Commun., 7 (2013), 161-174.  doi: 10.3934/amc.2013.7.161.  Google Scholar

[10]

S. T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-59806-2.  Google Scholar

[11]

M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Available from: http://www.codetables.de. Google Scholar

[12]

W. H. HaemersR. Peeters and J. M. van Rijckevorsel, Binary codes of strongly regular graphs, Des. Codes Cryptogr., 17 (1999), 187-209.  doi: 10.1023/A:1026479210284.  Google Scholar

[13]

W. H. Haemers and E. Spence, Enumeration of cospectral graphs, European J. Combin., 25 (2004), 199-211.  doi: 10.1016/S0195-6698(03)00100-8.  Google Scholar

[14]

M. Harada, Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights, Adv. Math. Commun., 10 (2016), 695-706.  doi: 10.3934/amc.2016035.  Google Scholar

[15]

M. Harada and V. Tonchev, Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math., 264 (2003), 81-90.  doi: 10.1016/S0012-365X(02)00553-8.  Google Scholar

[16] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[17]

J. D. KeyT. P. McDonough and V. C. Mavron, Improved partial permutation decoding for Reed-Muller codes, Discrete Math., 340 (2017), 722-728.  doi: 10.1016/j.disc.2016.11.031.  Google Scholar

[18]

F. J. MacWilliams, Permutation decoding of systematic codes, Bell System Tech. J., 43 (1964), 485-505.  doi: 10.1002/j.1538-7305.1964.tb04075.x.  Google Scholar

[19]

E. Spence, Strongly regular graphs on at most 64 vertices, Available from: http://www.maths.gla.ac.uk/~es/srgraphs.php. Google Scholar

[20]

F. Szöllősi and P. R. J. Östergård, Enumeration of Seidel matrices, European J. Combin., 69 (2018), 169-184.  doi: 10.1016/j.ejc.2017.10.009.  Google Scholar

[21]

V. D. Tonchev, Combinatorial Configurations: Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, 40, John Wiley & Sons, Inc., New York, 1988.  Google Scholar

Table 1.  Self-orthogonal codes constructed from Seidel matrices of SRGs
Graph $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ \mathcal{G}_1^1 $ $ [10,4,6]_3* $ $ [10,6,4]_3* $ 2880
$ \mathcal{G}_2^1 $ $ [26,11,8]_5 $ $ [26,15,6]_5 $ 576
$ \mathcal{G}_2^3 $ $ [26,12,8]_5 $ $ [26,14,6]_5 $ 48
$ \mathcal{G}_2^6 $ $ [26,12,8]_5 $ $ [26,14,6]_5 $ 312
$ \mathcal{G}_2^8 $ $ [26,9,14]_5* $ $ [28,17,6]_5 $ 124800
$ \mathcal{G}_3^1 $ $ [28,7,12]_3 $ $ [28,21,4]_3* $ $ 2^{10}\cdot 3^4\cdot 5^1 \cdot 7^1 $
Graph $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ \mathcal{G}_1^1 $ $ [10,4,6]_3* $ $ [10,6,4]_3* $ 2880
$ \mathcal{G}_2^1 $ $ [26,11,8]_5 $ $ [26,15,6]_5 $ 576
$ \mathcal{G}_2^3 $ $ [26,12,8]_5 $ $ [26,14,6]_5 $ 48
$ \mathcal{G}_2^6 $ $ [26,12,8]_5 $ $ [26,14,6]_5 $ 312
$ \mathcal{G}_2^8 $ $ [26,9,14]_5* $ $ [28,17,6]_5 $ 124800
$ \mathcal{G}_3^1 $ $ [28,7,12]_3 $ $ [28,21,4]_3* $ $ 2^{10}\cdot 3^4\cdot 5^1 \cdot 7^1 $
Table 2.  Self-orthogonal codes constructed from orbit matrices of the Seidel matrix of $ \mathcal{G}_1 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{1}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_3 $ $ [69,21,15]_3 $ $ [69,48,5]_3 $ 80
$ Z_{13} $ $ [16,4,9]_3* $ $ [16,12,1]_3 $ 2880
$ G \leq \mathrm{Aut}({\mathcal{G}_{1}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_3 $ $ [69,21,15]_3 $ $ [69,48,5]_3 $ 80
$ Z_{13} $ $ [16,4,9]_3* $ $ [16,12,1]_3 $ 2880
Table 3.  Self-orthogonal codes constructed from orbit matrices of the Seidel matrix of $ \mathcal{G}_2 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{2}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_3 $ $ [10,4,6]_3* $ $ [10,6,4]_3* $ 2880
$ Z_3 $ $ [36,14,12]_3 $ $ [36,22,6]_3 $ 2903040
$ Z_3 $ $ [28,7,12]_3 $ $ [28,21,4]_3* $ 2903040
$ Z_3 $ $ [42,15,12]_3 $ $ [42,27,4]_3 $ 17280
$ Z_3 $ $ [45,15,12]_3 $ $ [45,30,4]_3 $ 5184
$ Z_{17} $ $ [8,2,6]_3* $ $ [8,6,2]_3* $ 768
$ G \leq \mathrm{Aut}({\mathcal{G}_{2}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_3 $ $ [10,4,6]_3* $ $ [10,6,4]_3* $ 2880
$ Z_3 $ $ [36,14,12]_3 $ $ [36,22,6]_3 $ 2903040
$ Z_3 $ $ [28,7,12]_3 $ $ [28,21,4]_3* $ 2903040
$ Z_3 $ $ [42,15,12]_3 $ $ [42,27,4]_3 $ 17280
$ Z_3 $ $ [45,15,12]_3 $ $ [45,30,4]_3 $ 5184
$ Z_{17} $ $ [8,2,6]_3* $ $ [8,6,2]_3* $ 768
Table 4.  Self-orthogonal codes constructed from orbit matrices of the Laplacian matrix of $ \mathcal{G}_3 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{3}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_3 $ $ [12,2,3]_3 $ $ [12,10,2]_3* $ $ 2^{10}\cdot 3^5\cdot 5\cdot 7 $
$ Z_3 $ $ [15,5,6]_3 $ $ [15,10,3]_3 $ 10
$ Z_3 $ $ [40,10,18]_3 $ $ [40,30,4]_3 $ $ 2^9\cdot 3^6\cdot 5\cdot 13 $
$ Z_3 $ $ [45,15,12]_3 $ $ [45,30,6]_3 $ 103680
$ Z_3 $ $ [51,13,12]_3 $ $ [51,38,4]_3 $ 10368
$ Z_3 $ $ [52,13,12]_3 $ $ [52,39,3]_3 $ 5184
$ Z_3 $ $ [53,14,12]_3 $ $ [53,39,4]_3 $ 864
$ Z_5 $ $ [33,9,12]_3 $ $ [33,24,2]_3 $ 96
$ G \leq \mathrm{Aut}({\mathcal{G}_{3}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_3 $ $ [12,2,3]_3 $ $ [12,10,2]_3* $ $ 2^{10}\cdot 3^5\cdot 5\cdot 7 $
$ Z_3 $ $ [15,5,6]_3 $ $ [15,10,3]_3 $ 10
$ Z_3 $ $ [40,10,18]_3 $ $ [40,30,4]_3 $ $ 2^9\cdot 3^6\cdot 5\cdot 13 $
$ Z_3 $ $ [45,15,12]_3 $ $ [45,30,6]_3 $ 103680
$ Z_3 $ $ [51,13,12]_3 $ $ [51,38,4]_3 $ 10368
$ Z_3 $ $ [52,13,12]_3 $ $ [52,39,3]_3 $ 5184
$ Z_3 $ $ [53,14,12]_3 $ $ [53,39,4]_3 $ 864
$ Z_5 $ $ [33,9,12]_3 $ $ [33,24,2]_3 $ 96
Table 5.  Self-orthogonal codes constructed from orbit matrices of Laplace matrix of $ \mathcal{G}_4 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{4}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_2 $ $ [12,2,6]_2 $ $ [12,10,2]_2* $ 1036800
$ Z_2 $ $ [14,7,4]_2* $ $ [14,7,4]_2* $ 56448
$ Z_2 $ $ [40,14,8]_2 $ $ [40,26,4]_2 $ 3932160
$ Z_2 $ $ [120,24,24]_2 $ $ [120,96,5]_2 $ 1920
$ Z_2 $ $ [133,27,24]_2 $ $ [133,106,6]_2 $ 336
$ Z_2 $ $ [134,30,24]_2 $ $ [134,104,5]_2 $ 240
$ Z_4 $ $ [16,6,6]_2* $ $ [16,10,4]_2* $ 11520
$ Z_4 $ $ [18,3,6]_2 $ $ [18,15,2]_2* $ $ 2^{13}\cdot 3^{7}\cdot 5^3 $
$ Z_4 $ $ [18,4,8]_2* $ $ [18,14,2]_2* $ 36864
$ Z_4 $ $ [36,6,8]_2 $ $ [36,30,2]_2 $ $ 2^{31}\cdot 3^{13} $
$ Z_4 $ $ [48,8,16_2 $ $ [48,40,4]_2* $ 69120
$ Z_4 $ $ [60,12,12]_2 $ $ [60,48,4]_2 $ 49152
$ Z_4 $ $ [61,13,16]_2 $ $ [61,48,4]_2 $ 17280
$ Z_5 $ $ [56,10,16]_2 $ $ [56,46,2]_2 $ 1440
$ Z_7 $ $ [40,8,8]_2 $ $ [40,32,2]_2 $ 393216
$ Z_7 $ $ [40,6,14]_5 $ $ [40,34,2]_5 $ 3072
$ Z_5 $ $ [56,8,20]_5 $ $ [56,48,2]_5 $ 115200
$ Z_5 $ $ [54,8,20]_5 $ $ [56,48,2]_5 $ 91729428480
$ G \leq \mathrm{Aut}({\mathcal{G}_{4}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_2 $ $ [12,2,6]_2 $ $ [12,10,2]_2* $ 1036800
$ Z_2 $ $ [14,7,4]_2* $ $ [14,7,4]_2* $ 56448
$ Z_2 $ $ [40,14,8]_2 $ $ [40,26,4]_2 $ 3932160
$ Z_2 $ $ [120,24,24]_2 $ $ [120,96,5]_2 $ 1920
$ Z_2 $ $ [133,27,24]_2 $ $ [133,106,6]_2 $ 336
$ Z_2 $ $ [134,30,24]_2 $ $ [134,104,5]_2 $ 240
$ Z_4 $ $ [16,6,6]_2* $ $ [16,10,4]_2* $ 11520
$ Z_4 $ $ [18,3,6]_2 $ $ [18,15,2]_2* $ $ 2^{13}\cdot 3^{7}\cdot 5^3 $
$ Z_4 $ $ [18,4,8]_2* $ $ [18,14,2]_2* $ 36864
$ Z_4 $ $ [36,6,8]_2 $ $ [36,30,2]_2 $ $ 2^{31}\cdot 3^{13} $
$ Z_4 $ $ [48,8,16_2 $ $ [48,40,4]_2* $ 69120
$ Z_4 $ $ [60,12,12]_2 $ $ [60,48,4]_2 $ 49152
$ Z_4 $ $ [61,13,16]_2 $ $ [61,48,4]_2 $ 17280
$ Z_5 $ $ [56,10,16]_2 $ $ [56,46,2]_2 $ 1440
$ Z_7 $ $ [40,8,8]_2 $ $ [40,32,2]_2 $ 393216
$ Z_7 $ $ [40,6,14]_5 $ $ [40,34,2]_5 $ 3072
$ Z_5 $ $ [56,8,20]_5 $ $ [56,48,2]_5 $ 115200
$ Z_5 $ $ [54,8,20]_5 $ $ [56,48,2]_5 $ 91729428480
Table 6.  Self-orthogonal codes constructed from orbit matrices of the signless Laplacian matrix of $ \mathcal{G}_5 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{5}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_2 $ $ [16,3,8]_2* $ $ [16,13,2]_2* $ $ 2^{15}\cdot 3^5 $
$ Z_2 $ $ [32,5,16]_2* $ $ [32,27,2]_2* $ $ 2^{26}\cdot 3^2\cdot 5^1\cdot 7^1 $
$ Z_2 $ $ [40,5,16]_2 $ $ [40,35,2]_2* $ $ 2^{34}\cdot 3^{12}\cdot 5^1 $
$ Z_2 $ $ [60,3,32]_2 $ $ [60,57,2]_2 $ $ 2^{55}\cdot 3^{18}\cdot 5^8\cdot 7^7\cdot 11^1 $
$ Z_2 $ $ [64,4,32]_2* $ $ [64,60,2]_2* $ $ 2^{55}\cdot 3^{17}\cdot 5^1\cdot 7^2 $
$ Z_2 $ $ [64,7,32]_2* $ $ [64,57,4]_2* $ $ 2^{21}\cdot 3^4\cdot 5^1\cdot 7^2\cdot 31^1 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{5}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_2 $ $ [16,3,8]_2* $ $ [16,13,2]_2* $ $ 2^{15}\cdot 3^5 $
$ Z_2 $ $ [32,5,16]_2* $ $ [32,27,2]_2* $ $ 2^{26}\cdot 3^2\cdot 5^1\cdot 7^1 $
$ Z_2 $ $ [40,5,16]_2 $ $ [40,35,2]_2* $ $ 2^{34}\cdot 3^{12}\cdot 5^1 $
$ Z_2 $ $ [60,3,32]_2 $ $ [60,57,2]_2 $ $ 2^{55}\cdot 3^{18}\cdot 5^8\cdot 7^7\cdot 11^1 $
$ Z_2 $ $ [64,4,32]_2* $ $ [64,60,2]_2* $ $ 2^{55}\cdot 3^{17}\cdot 5^1\cdot 7^2 $
$ Z_2 $ $ [64,7,32]_2* $ $ [64,57,4]_2* $ $ 2^{21}\cdot 3^4\cdot 5^1\cdot 7^2\cdot 31^1 $
Table 7.  Self-orthogonal codes constructed from orbit matrices of the Seidel matrix of $ \mathcal{G}_6 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{6}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_5 $ $ [19,4,10]_5 $ $ [19,15,2]_5 $ 1920
$ Z_5 $ $ [20,3,10]_5 $ $ [20,17,2]_5 $ $ 2^{17}\cdot 3^5\cdot 5^4 $
$ Z_5 $ $ [20,4,14]_5* $ $ [20,16,4]_5* $ 960
$ G \leq \mathrm{Aut}({\mathcal{G}_{6}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_5 $ $ [19,4,10]_5 $ $ [19,15,2]_5 $ 1920
$ Z_5 $ $ [20,3,10]_5 $ $ [20,17,2]_5 $ $ 2^{17}\cdot 3^5\cdot 5^4 $
$ Z_5 $ $ [20,4,14]_5* $ $ [20,16,4]_5* $ 960
Table 8.  Self-orthogonal codes constructed from orbit matrices of the Laplacian matrix of $ \mathcal{G}_7 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{7}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_5 $ $ [54,4,20]_5 $ $ [54,50,2]_5 $ $ 2^{24}\cdot 3^{7}\cdot 5^{1} $
$ Z_5 $ $ [55,3,20]_5 $ $ [55,52,2]_5* $ $ 2^{44}\cdot 3^{17}\cdot 5^{12}\cdot 7^3\cdot 11^2 \cdot 13\cdot 17\cdot 19\cdot 23 $
$ G \leq \mathrm{Aut}({\mathcal{G}_{7}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
$ Z_5 $ $ [54,4,20]_5 $ $ [54,50,2]_5 $ $ 2^{24}\cdot 3^{7}\cdot 5^{1} $
$ Z_5 $ $ [55,3,20]_5 $ $ [55,52,2]_5* $ $ 2^{44}\cdot 3^{17}\cdot 5^{12}\cdot 7^3\cdot 11^2 \cdot 13\cdot 17\cdot 19\cdot 23 $
Table 9.  Self-dual codes over $ \mathbb{Z}_4 $ constructed from orbit matrices of signless Laplacian matrices of SRGs $ \mathcal{G}_5 $ and $ \mathcal{G}_8 $
Graph $ C $ $ d_H(C) $, $ d_E(C) $, $ d_L(C) $ Type
$ \mathcal{G}_5 $ $ ((8,4^1 2^{6})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((16,4^3 2^{10})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((32,4^5 2^{22})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((36,4^1 2^{34})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((40,4^5 2^{30})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((24,4^1 2^{22})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((24,4^5 2^{14})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((28,4^1 2^{26})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((30,4^0 2^{30})) $ 1, 4, 2
Graph $ C $ $ d_H(C) $, $ d_E(C) $, $ d_L(C) $ Type
$ \mathcal{G}_5 $ $ ((8,4^1 2^{6})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((16,4^3 2^{10})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((32,4^5 2^{22})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((36,4^1 2^{34})) $ 2, 8, 4
$ \mathcal{G}_5 $ $ ((40,4^5 2^{30})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((24,4^1 2^{22})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((24,4^5 2^{14})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((28,4^1 2^{26})) $ 2, 8, 4
$ \mathcal{G}_8 $ $ ((30,4^0 2^{30})) $ 1, 4, 2
[1]

Dean Crnković, Marija Maksimović, Bernardo Gabriel Rodrigues, Sanja Rukavina. Self-orthogonal codes from the strongly regular graphs on up to 40 vertices. Advances in Mathematics of Communications, 2016, 10 (3) : 555-582. doi: 10.3934/amc.2016026

[2]

K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026

[3]

Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161

[4]

Cristian Dobre. Mathematical properties of the regular *-representation of matrix $*$-algebras with applications to semidefinite programming. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 367-378. doi: 10.3934/naco.2013.3.367

[5]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[6]

Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415

[7]

Paul Skerritt, Cornelia Vizman. Dual pairs for matrix groups. Journal of Geometric Mechanics, 2019, 11 (2) : 255-275. doi: 10.3934/jgm.2019014

[8]

Meijuan Shang, Yanan Liu, Lingchen Kong, Xianchao Xiu, Ying Yang. Nonconvex mixed matrix minimization. Mathematical Foundations of Computing, 2019, 2 (2) : 107-126. doi: 10.3934/mfc.2019009

[9]

Adel Alahmadi, Hamed Alsulami, S.K. Jain, Efim Zelmanov. On matrix wreath products of algebras. Electronic Research Announcements, 2017, 24: 78-86. doi: 10.3934/era.2017.24.009

[10]

Qingshan You, Qun Wan, Yipeng Liu. A short note on strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2013, 7 (1) : 305-306. doi: 10.3934/ipi.2013.7.305

[11]

Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015

[12]

Crnković Dean, Vedrana Mikulić Crnković, Bernardo G. Rodrigues. On self-orthogonal designs and codes related to Held's simple group. Advances in Mathematics of Communications, 2018, 12 (3) : 607-628. doi: 10.3934/amc.2018036

[13]

Leetika Kathuria, Madhu Raka. Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless. Advances in Mathematics of Communications, 2012, 6 (4) : 499-503. doi: 10.3934/amc.2012.6.499

[14]

Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1

[15]

Lei Zhang, Anfu Zhu, Aiguo Wu, Lingling Lv. Parametric solutions to the regulator-conjugate matrix equations. Journal of Industrial & Management Optimization, 2017, 13 (2) : 623-631. doi: 10.3934/jimo.2016036

[16]

Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55

[17]

Houduo Qi, ZHonghang Xia, Guangming Xing. An application of the nearest correlation matrix on web document classification. Journal of Industrial & Management Optimization, 2007, 3 (4) : 701-713. doi: 10.3934/jimo.2007.3.701

[18]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[19]

A. Cibotarica, Jiu Ding, J. Kolibal, Noah H. Rhee. Solutions of the Yang-Baxter matrix equation for an idempotent. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 347-352. doi: 10.3934/naco.2013.3.347

[20]

Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems & Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (14)
  • HTML views (31)
  • Cited by (0)

Other articles
by authors

[Back to Top]