November  2020, 14(4): 603-611. doi: 10.3934/amc.2020033

Designs from maximal subgroups and conjugacy classes of Ree groups

1. 

School of Mathematical Sciences, North-West University, (Mafikeng) 2754, South Africa

2. 

School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal, Durban 4000, South Africa

* Corresponding author: Seiran Zandi

Received  August 2018 Revised  August 2019 Published  November 2020 Early access  November 2019

Fund Project: The first author acknowledges support of NRF and NWU (Mafikeng).
The second author acknowledges support of NRF through Grant Numbers 95725 and 106071.
The third author acknowledges support of NWU (Mafikeng) postdoctoral fellowship.
The fourth author acknowledges support of NRF postdoctoral fellowship through Grant Number 91495

In this paper, using a method of construction of $ 1 $-designs which are not necessarily symmetric, introduced by Key and Moori in [5], we determine a number of $ 1 $-designs with interesting parameters from the maximal subgroups and the conjugacy classes of the small Ree groups $ ^2G_2(q) $. The designs we obtain are invariant under the action of the groups $ ^2G_2(q) $.

Citation: Jamshid Moori, Bernardo G. Rodrigues, Amin Saeidi, Seiran Zandi. Designs from maximal subgroups and conjugacy classes of Ree groups. Advances in Mathematics of Communications, 2020, 14 (4) : 603-611. doi: 10.3934/amc.2020033
References:
[1]

E. F. Assmus Jr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9781316529836.

[2] J. H. ConwayR. T. CurtisS. P. NortonR. A. Parker and R. A. Wilson, Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Eynsham, 1985. 
[3]

I. M. Isaacs, Character Theory of Finite Groups, Dover Publications, Inc., New York, 1994.

[4]

J. D. Key and J. Moori, Codes, designs and graphs from the Janko groups J1 and J2, J. Combin. Math. Combin. Comput., 40 (2002), 143-159. 

[5]

J. D. Key and J. Moori, Designs from maximal subgroups and conjugacy classes of finite simple groups, J. Combin. Math. Combin. Comput., 99 (2016), 41-60. 

[6]

J. D. KeyJ. Moori and B. G. Rodrigues, On some designs and codes from primitive representations of some finite simple groups, Combin. Math. Combin. Comput., 45 (2003), 3-19. 

[7]

O. H. King, The subgroup structure of finite classical groups in terms of geometric configurations, in Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 327, Cambridge Univ. Press, Cambridge, 2005, 26-56. doi: 10.1017/CBO9780511734885.003.

[8]

V. M. Levchuk and Y. N. Nuzhin, The structure of Ree groups, Algebra i Logika, 24 (1985), 26-41. 

[9]

J. Moori, Finite groups, designs and codes, in Information Security, Coding Theory and Related Combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 29, IOS, Amsterdam, 2011,202-230.

[10]

J. Moori and B. G. Rodrigues, A self-orthogonal doubly even code invariant under McL:2, J. Combin. Theory Ser. A, 110 (2005), 53-69.  doi: 10.1016/j.jcta.2004.10.001.

[11]

J. Moori and B. G. Rodrigues, Some designs and codes invariant under the simple group Co2, J. Algebra, 316 (2007), 649-661.  doi: 10.1016/j.jalgebra.2007.02.004.

[12]

J. Moori and B. G. Rodrigues, A self-orthogonal doubly-even code invariant under the McL, Ars Combin., 91 (2009), 321-332. 

[13]

J. Moori and B. G. Rodrigues, On some designs and codes invariant under the Higman-Sims group, Util. Math., 86 (2011), 225-239. 

[14]

J. MooriB. G. RodriguesA. Saeidi and S. Zandi, Some symmetric designs invariant under the small Ree groups, Comm. Algebra, 47 (2019), 2131-2148.  doi: 10.1080/00927872.2018.1530245.

[15]

J. Moori and A. Saeidi, Some designs and codes invariant under the Tits group, Adv. Math. Commun., 11 (2017), 77-82.  doi: 10.3934/amc.2017003.

[16]

J. Moori and A. Saeidi, Some design invariant under the Suzuki groups, Util. Math., 109 (2018), 105-114. 

[17]

J. Moori and A. Saeidi, Constructing some design invariant under the PSL2(q), q even, Comm. Algebra, 46 (2018), 160-166.  doi: 10.1080/00927872.2017.1316854.

[18]

R. Ree, A family of simple groups asssociated with the simple Lie algebra of type (G2), Amer. J. Math, 83 (1961), 432-462.  doi: 10.2307/2372888.

[19]

D. O. Revin and E. P. Vdovin, On the number of classes of conjugate Hall subgroups in finite simple groups, J. Algebra, 324 (2010), 3614-3652.  doi: 10.1016/j.jalgebra.2010.09.014.

[20]

H. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc., 121 (1966), 62-89.  doi: 10.2307/1994333.

[21]

R. A. Wilson, The Finite Simple Groups, Graduate Texts in Mathematics, 251, Springer-Verlag London, Ltd., London, 2009. doi: 10.1007/978-1-84800-988-2.

[22]

R. A. Wilson, Another new approach to the small Ree groups, Arch. Math. (Basel), 94 (2010), 501-510.  doi: 10.1007/s00013-010-0130-4.

show all references

References:
[1]

E. F. Assmus Jr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9781316529836.

[2] J. H. ConwayR. T. CurtisS. P. NortonR. A. Parker and R. A. Wilson, Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Eynsham, 1985. 
[3]

I. M. Isaacs, Character Theory of Finite Groups, Dover Publications, Inc., New York, 1994.

[4]

J. D. Key and J. Moori, Codes, designs and graphs from the Janko groups J1 and J2, J. Combin. Math. Combin. Comput., 40 (2002), 143-159. 

[5]

J. D. Key and J. Moori, Designs from maximal subgroups and conjugacy classes of finite simple groups, J. Combin. Math. Combin. Comput., 99 (2016), 41-60. 

[6]

J. D. KeyJ. Moori and B. G. Rodrigues, On some designs and codes from primitive representations of some finite simple groups, Combin. Math. Combin. Comput., 45 (2003), 3-19. 

[7]

O. H. King, The subgroup structure of finite classical groups in terms of geometric configurations, in Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 327, Cambridge Univ. Press, Cambridge, 2005, 26-56. doi: 10.1017/CBO9780511734885.003.

[8]

V. M. Levchuk and Y. N. Nuzhin, The structure of Ree groups, Algebra i Logika, 24 (1985), 26-41. 

[9]

J. Moori, Finite groups, designs and codes, in Information Security, Coding Theory and Related Combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 29, IOS, Amsterdam, 2011,202-230.

[10]

J. Moori and B. G. Rodrigues, A self-orthogonal doubly even code invariant under McL:2, J. Combin. Theory Ser. A, 110 (2005), 53-69.  doi: 10.1016/j.jcta.2004.10.001.

[11]

J. Moori and B. G. Rodrigues, Some designs and codes invariant under the simple group Co2, J. Algebra, 316 (2007), 649-661.  doi: 10.1016/j.jalgebra.2007.02.004.

[12]

J. Moori and B. G. Rodrigues, A self-orthogonal doubly-even code invariant under the McL, Ars Combin., 91 (2009), 321-332. 

[13]

J. Moori and B. G. Rodrigues, On some designs and codes invariant under the Higman-Sims group, Util. Math., 86 (2011), 225-239. 

[14]

J. MooriB. G. RodriguesA. Saeidi and S. Zandi, Some symmetric designs invariant under the small Ree groups, Comm. Algebra, 47 (2019), 2131-2148.  doi: 10.1080/00927872.2018.1530245.

[15]

J. Moori and A. Saeidi, Some designs and codes invariant under the Tits group, Adv. Math. Commun., 11 (2017), 77-82.  doi: 10.3934/amc.2017003.

[16]

J. Moori and A. Saeidi, Some design invariant under the Suzuki groups, Util. Math., 109 (2018), 105-114. 

[17]

J. Moori and A. Saeidi, Constructing some design invariant under the PSL2(q), q even, Comm. Algebra, 46 (2018), 160-166.  doi: 10.1080/00927872.2017.1316854.

[18]

R. Ree, A family of simple groups asssociated with the simple Lie algebra of type (G2), Amer. J. Math, 83 (1961), 432-462.  doi: 10.2307/2372888.

[19]

D. O. Revin and E. P. Vdovin, On the number of classes of conjugate Hall subgroups in finite simple groups, J. Algebra, 324 (2010), 3614-3652.  doi: 10.1016/j.jalgebra.2010.09.014.

[20]

H. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc., 121 (1966), 62-89.  doi: 10.2307/1994333.

[21]

R. A. Wilson, The Finite Simple Groups, Graduate Texts in Mathematics, 251, Springer-Verlag London, Ltd., London, 2009. doi: 10.1007/978-1-84800-988-2.

[22]

R. A. Wilson, Another new approach to the small Ree groups, Arch. Math. (Basel), 94 (2010), 501-510.  doi: 10.1007/s00013-010-0130-4.

Table 1.  Non-trivial designs from $G = Ree(q)$ using construction Method 2
$Max$ $t =o(x)$ $v = |x^G|$ $k =| M \cap x^G|$ $ \lambda= \chi_{M_i}(x)$
$M_1$ $t=2$ $q^2(q^2-q+1)$ $q^2$ $q+1$
$M_1$ $t=3$ $(q^3+1)(q-1)$ $q-1$ 1
$M_1$ $t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $\frac{q(q-1)}{2}$ 1
$M_1$ $t=9$ $\frac{q^2(q^3+1)(q-1)}{3}$ $\frac{q^2(q-1)}{3}$ 1
$M_1$ $t=6$ $\frac{q^2(q^3+1)(q-1)}{2}$ $\frac{q^2 (q-1)}{2}$ 1
$M_1$ $t |(q-1)$, $t \ne 2$ ${q^3}(q^3+1)$ $2q^3$ 2
$M_2, M_3$ $ t=2$ $q^2(q^2-q+1) $ $ q^{\mp}$ $\frac{{{q(q^2-1)}}}{6}$
$M_2, M_3$ $t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $ q^{\mp}$ $\frac{q^2}{3}$
$M_2, M_3$ $t=6$ $\frac{q^2(q^3+1)(q-1)}{2}$ $ q^{\mp}$ $\frac{q}{3}$
$M_2, M_3$ $t | q^{\mp}$ ${q^3(q^2-1)q^{\pm}}$ $ 6$ $1$
$M_4$ $ t=2$ $q^2(q^2-q+1) $ $ q^2-q+1$ $q^2-q+1$
$M_4$ $t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $ \frac{q^2-1}{2}$ $q$
$M_4$ $t=6$ $\frac{q^2(q^3+1)(q-1)}{2} $ $ \frac{q^2-1}{2}$ $1$
$M_4$ $t |(q-1)$, $t \ne 2$ $q^3(q^3+1)$ $ q(q+1)$ $1$
$M_4$ $t |\frac{q+1}{2}$, $t \ne 2$ ${q^3(q^2-q+1)(q-1)}$ $ 3q(q-1))$ $3$
$M_5$ $t=2$ $q^2(q^2-q+1) $ $ q+4$ $\frac{{{q(q-1)(q+4)}}}{6}$
$M_5$ $ t=3$ $\frac{{{{q}(q^3+1)(q-1)}}}{2}$ $ q+1$ $ \frac{{{q^2}}}{3}$
$M_5$ $ t=6$ $\frac{{{{q^2}(q^3+1)(q-1)}}}{2}$ $ q+1$ $ \frac{{{q}}}{3}$
$M_5$ $t |\frac{q+1}{2}$, $t \ne 2$ ${q^3(q^2-q+1)(q-1)}$ $ 6$ 1
$M_6$ $t=2$ $q^2(q^2-q+1) $ $ q_0^2(q_0^2-q_0+1)$ $\frac{q(q^2-1)}{q_0(q_0^2-1)}$
$M_6$ $ t=3$ $(q^3+1)(q-1)$ $(q_0^3+1)(q_0-1)$ $ \frac{{{q^3}}}{q_0^3}$
$M_6$ $ t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $\frac{q_0(q_0^3+1)(q_0-1)}{2}$ $ \frac{{{q^2}}}{q_0^2}$
$M_6$ $t= 9$ $\frac{q^2(q^3+1)(q-1)}{3}$ $\frac{q_0^2(q_0^3+1)(q_0-1)}{3}$ $ \frac{{{q}}}{q_0}$
$M_6$ $t= 6$ $\frac{q^2(q^3+1)(q-1)}{2}$ $\frac{q_0^2(q_0^3+1)(q_0-1)}{2}$ $ \frac{{{q}}}{q_0}$
$M_6$ $t |(q_0-1)$, $t \ne 2$ ${q^3(q^3+1)}$ ${q_0^3(q_0^3+1)}$ $ \frac{q-1}{q_0-1} $
$M_6$ $t |\frac{q_0+1}{2}$, $t \ne 2$ ${q^3(q^2-q+1)(q-1)}$ ${q_0^3(q_0^2-q_0+1)(q_0-1)}$ $ \frac{q+1}{q_0+1} $
$^*M_6$ $t|q_0^{\pm}$ ${q^3}\left( {q^2 - 1} \right){q^{\pm}} $ ${q_0^3}\left( {q_0^2 - 1} \right){q_0^{\pm}} $ $ \frac{{q^{\mp}}}{{q_0^{\mp}}} $
$^{**}M_6$ $t|q_0^{\pm}$ ${q^3(q^3+1)}$ ${q_0^3}\left( {q_0^2 - 1} \right){q_0^{\pm}} $ $\frac{q-1}{q_0^{\mp}}$
$Max$ $t =o(x)$ $v = |x^G|$ $k =| M \cap x^G|$ $ \lambda= \chi_{M_i}(x)$
$M_1$ $t=2$ $q^2(q^2-q+1)$ $q^2$ $q+1$
$M_1$ $t=3$ $(q^3+1)(q-1)$ $q-1$ 1
$M_1$ $t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $\frac{q(q-1)}{2}$ 1
$M_1$ $t=9$ $\frac{q^2(q^3+1)(q-1)}{3}$ $\frac{q^2(q-1)}{3}$ 1
$M_1$ $t=6$ $\frac{q^2(q^3+1)(q-1)}{2}$ $\frac{q^2 (q-1)}{2}$ 1
$M_1$ $t |(q-1)$, $t \ne 2$ ${q^3}(q^3+1)$ $2q^3$ 2
$M_2, M_3$ $ t=2$ $q^2(q^2-q+1) $ $ q^{\mp}$ $\frac{{{q(q^2-1)}}}{6}$
$M_2, M_3$ $t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $ q^{\mp}$ $\frac{q^2}{3}$
$M_2, M_3$ $t=6$ $\frac{q^2(q^3+1)(q-1)}{2}$ $ q^{\mp}$ $\frac{q}{3}$
$M_2, M_3$ $t | q^{\mp}$ ${q^3(q^2-1)q^{\pm}}$ $ 6$ $1$
$M_4$ $ t=2$ $q^2(q^2-q+1) $ $ q^2-q+1$ $q^2-q+1$
$M_4$ $t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $ \frac{q^2-1}{2}$ $q$
$M_4$ $t=6$ $\frac{q^2(q^3+1)(q-1)}{2} $ $ \frac{q^2-1}{2}$ $1$
$M_4$ $t |(q-1)$, $t \ne 2$ $q^3(q^3+1)$ $ q(q+1)$ $1$
$M_4$ $t |\frac{q+1}{2}$, $t \ne 2$ ${q^3(q^2-q+1)(q-1)}$ $ 3q(q-1))$ $3$
$M_5$ $t=2$ $q^2(q^2-q+1) $ $ q+4$ $\frac{{{q(q-1)(q+4)}}}{6}$
$M_5$ $ t=3$ $\frac{{{{q}(q^3+1)(q-1)}}}{2}$ $ q+1$ $ \frac{{{q^2}}}{3}$
$M_5$ $ t=6$ $\frac{{{{q^2}(q^3+1)(q-1)}}}{2}$ $ q+1$ $ \frac{{{q}}}{3}$
$M_5$ $t |\frac{q+1}{2}$, $t \ne 2$ ${q^3(q^2-q+1)(q-1)}$ $ 6$ 1
$M_6$ $t=2$ $q^2(q^2-q+1) $ $ q_0^2(q_0^2-q_0+1)$ $\frac{q(q^2-1)}{q_0(q_0^2-1)}$
$M_6$ $ t=3$ $(q^3+1)(q-1)$ $(q_0^3+1)(q_0-1)$ $ \frac{{{q^3}}}{q_0^3}$
$M_6$ $ t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $\frac{q_0(q_0^3+1)(q_0-1)}{2}$ $ \frac{{{q^2}}}{q_0^2}$
$M_6$ $t= 9$ $\frac{q^2(q^3+1)(q-1)}{3}$ $\frac{q_0^2(q_0^3+1)(q_0-1)}{3}$ $ \frac{{{q}}}{q_0}$
$M_6$ $t= 6$ $\frac{q^2(q^3+1)(q-1)}{2}$ $\frac{q_0^2(q_0^3+1)(q_0-1)}{2}$ $ \frac{{{q}}}{q_0}$
$M_6$ $t |(q_0-1)$, $t \ne 2$ ${q^3(q^3+1)}$ ${q_0^3(q_0^3+1)}$ $ \frac{q-1}{q_0-1} $
$M_6$ $t |\frac{q_0+1}{2}$, $t \ne 2$ ${q^3(q^2-q+1)(q-1)}$ ${q_0^3(q_0^2-q_0+1)(q_0-1)}$ $ \frac{q+1}{q_0+1} $
$^*M_6$ $t|q_0^{\pm}$ ${q^3}\left( {q^2 - 1} \right){q^{\pm}} $ ${q_0^3}\left( {q_0^2 - 1} \right){q_0^{\pm}} $ $ \frac{{q^{\mp}}}{{q_0^{\mp}}} $
$^{**}M_6$ $t|q_0^{\pm}$ ${q^3(q^3+1)}$ ${q_0^3}\left( {q_0^2 - 1} \right){q_0^{\pm}} $ $\frac{q-1}{q_0^{\mp}}$
[1]

Yves Guivarc'h. On the spectrum of a large subgroup of a semisimple group. Journal of Modern Dynamics, 2008, 2 (1) : 15-42. doi: 10.3934/jmd.2008.2.15

[2]

A. Yu. Ol'shanskii and M. V. Sapir. The conjugacy problem for groups, and Higman embeddings. Electronic Research Announcements, 2003, 9: 40-50.

[3]

Brandon Seward. Every action of a nonamenable group is the factor of a small action. Journal of Modern Dynamics, 2014, 8 (2) : 251-270. doi: 10.3934/jmd.2014.8.251

[4]

Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 2010, 4 (2) : 215-235. doi: 10.3934/amc.2010.4.215

[5]

Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144

[6]

Wei Xu, Liying Yu, Gui-Hua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2531-2549. doi: 10.3934/jimo.2019068

[7]

Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, 2021, 29 (5) : 3031-3068. doi: 10.3934/era.2021025

[8]

S. A. Krat. On pairs of metrics invariant under a cocompact action of a group. Electronic Research Announcements, 2001, 7: 79-86.

[9]

Mickaël D. Chekroun, Jean Roux. Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3957-3980. doi: 10.3934/dcds.2013.33.3957

[10]

Eldho K. Thomas, Nadya Markin, Frédérique Oggier. On Abelian group representability of finite groups. Advances in Mathematics of Communications, 2014, 8 (2) : 139-152. doi: 10.3934/amc.2014.8.139

[11]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[12]

Luigi Ambrosio, Camillo Brena. Stability of a class of action functionals depending on convex functions. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022055

[13]

Xiaojun Huang, Yuan Lian, Changrong Zhu. A Billingsley-type theorem for the pressure of an action of an amenable group. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 959-993. doi: 10.3934/dcds.2019040

[14]

Carlos Matheus, Jean-Christophe Yoccoz. The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis. Journal of Modern Dynamics, 2010, 4 (3) : 453-486. doi: 10.3934/jmd.2010.4.453

[15]

Bertuel Tangue Ndawa. Infinite lifting of an action of symplectomorphism group on the set of bi-Lagrangian structures. Journal of Geometric Mechanics, 2022  doi: 10.3934/jgm.2022006

[16]

Martin Pinsonnault. Maximal compact tori in the Hamiltonian group of 4-dimensional symplectic manifolds. Journal of Modern Dynamics, 2008, 2 (3) : 431-455. doi: 10.3934/jmd.2008.2.431

[17]

Kaizhi Wang. Action minimizing stochastic invariant measures for a class of Lagrangian systems. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1211-1223. doi: 10.3934/cpaa.2008.7.1211

[18]

Yoshikazu Katayama, Colin E. Sutherland and Masamichi Takesaki. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic Research Announcements, 1995, 1: 43-47.

[19]

Ernesto Aranda, Pablo Pedregal. Constrained envelope for a general class of design problems. Conference Publications, 2003, 2003 (Special) : 30-41. doi: 10.3934/proc.2003.2003.30

[20]

Alexander Moreto. Complex group algebras of finite groups: Brauer's Problem 1. Electronic Research Announcements, 2005, 11: 34-39.

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (484)
  • HTML views (549)
  • Cited by (0)

[Back to Top]