doi: 10.3934/amc.2020033

Designs from maximal subgroups and conjugacy classes of Ree groups

1. 

School of Mathematical Sciences, North-West University, (Mafikeng) 2754, South Africa

2. 

School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal, Durban 4000, South Africa

* Corresponding author: Seiran Zandi

Received  August 2018 Revised  August 2019 Published  November 2019

Fund Project: The first author acknowledges support of NRF and NWU (Mafikeng).
The second author acknowledges support of NRF through Grant Numbers 95725 and 106071.
The third author acknowledges support of NWU (Mafikeng) postdoctoral fellowship.
The fourth author acknowledges support of NRF postdoctoral fellowship through Grant Number 91495

In this paper, using a method of construction of $ 1 $-designs which are not necessarily symmetric, introduced by Key and Moori in [5], we determine a number of $ 1 $-designs with interesting parameters from the maximal subgroups and the conjugacy classes of the small Ree groups $ ^2G_2(q) $. The designs we obtain are invariant under the action of the groups $ ^2G_2(q) $.

Citation: Jamshid Moori, Bernardo G. Rodrigues, Amin Saeidi, Seiran Zandi. Designs from maximal subgroups and conjugacy classes of Ree groups. Advances in Mathematics of Communications, doi: 10.3934/amc.2020033
References:
[1]

E. F. Assmus Jr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9781316529836.  Google Scholar

[2] J. H. ConwayR. T. CurtisS. P. NortonR. A. Parker and R. A. Wilson, Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Eynsham, 1985.   Google Scholar
[3]

I. M. Isaacs, Character Theory of Finite Groups, Dover Publications, Inc., New York, 1994.  Google Scholar

[4]

J. D. Key and J. Moori, Codes, designs and graphs from the Janko groups J1 and J2, J. Combin. Math. Combin. Comput., 40 (2002), 143-159.   Google Scholar

[5]

J. D. Key and J. Moori, Designs from maximal subgroups and conjugacy classes of finite simple groups, J. Combin. Math. Combin. Comput., 99 (2016), 41-60.   Google Scholar

[6]

J. D. KeyJ. Moori and B. G. Rodrigues, On some designs and codes from primitive representations of some finite simple groups, Combin. Math. Combin. Comput., 45 (2003), 3-19.   Google Scholar

[7]

O. H. King, The subgroup structure of finite classical groups in terms of geometric configurations, in Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 327, Cambridge Univ. Press, Cambridge, 2005, 26-56. doi: 10.1017/CBO9780511734885.003.  Google Scholar

[8]

V. M. Levchuk and Y. N. Nuzhin, The structure of Ree groups, Algebra i Logika, 24 (1985), 26-41.   Google Scholar

[9]

J. Moori, Finite groups, designs and codes, in Information Security, Coding Theory and Related Combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 29, IOS, Amsterdam, 2011,202-230.  Google Scholar

[10]

J. Moori and B. G. Rodrigues, A self-orthogonal doubly even code invariant under McL:2, J. Combin. Theory Ser. A, 110 (2005), 53-69.  doi: 10.1016/j.jcta.2004.10.001.  Google Scholar

[11]

J. Moori and B. G. Rodrigues, Some designs and codes invariant under the simple group Co2, J. Algebra, 316 (2007), 649-661.  doi: 10.1016/j.jalgebra.2007.02.004.  Google Scholar

[12]

J. Moori and B. G. Rodrigues, A self-orthogonal doubly-even code invariant under the McL, Ars Combin., 91 (2009), 321-332.   Google Scholar

[13]

J. Moori and B. G. Rodrigues, On some designs and codes invariant under the Higman-Sims group, Util. Math., 86 (2011), 225-239.   Google Scholar

[14]

J. MooriB. G. RodriguesA. Saeidi and S. Zandi, Some symmetric designs invariant under the small Ree groups, Comm. Algebra, 47 (2019), 2131-2148.  doi: 10.1080/00927872.2018.1530245.  Google Scholar

[15]

J. Moori and A. Saeidi, Some designs and codes invariant under the Tits group, Adv. Math. Commun., 11 (2017), 77-82.  doi: 10.3934/amc.2017003.  Google Scholar

[16]

J. Moori and A. Saeidi, Some design invariant under the Suzuki groups, Util. Math., 109 (2018), 105-114.   Google Scholar

[17]

J. Moori and A. Saeidi, Constructing some design invariant under the PSL2(q), q even, Comm. Algebra, 46 (2018), 160-166.  doi: 10.1080/00927872.2017.1316854.  Google Scholar

[18]

R. Ree, A family of simple groups asssociated with the simple Lie algebra of type (G2), Amer. J. Math, 83 (1961), 432-462.  doi: 10.2307/2372888.  Google Scholar

[19]

D. O. Revin and E. P. Vdovin, On the number of classes of conjugate Hall subgroups in finite simple groups, J. Algebra, 324 (2010), 3614-3652.  doi: 10.1016/j.jalgebra.2010.09.014.  Google Scholar

[20]

H. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc., 121 (1966), 62-89.  doi: 10.2307/1994333.  Google Scholar

[21]

R. A. Wilson, The Finite Simple Groups, Graduate Texts in Mathematics, 251, Springer-Verlag London, Ltd., London, 2009. doi: 10.1007/978-1-84800-988-2.  Google Scholar

[22]

R. A. Wilson, Another new approach to the small Ree groups, Arch. Math. (Basel), 94 (2010), 501-510.  doi: 10.1007/s00013-010-0130-4.  Google Scholar

show all references

References:
[1]

E. F. Assmus Jr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9781316529836.  Google Scholar

[2] J. H. ConwayR. T. CurtisS. P. NortonR. A. Parker and R. A. Wilson, Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Eynsham, 1985.   Google Scholar
[3]

I. M. Isaacs, Character Theory of Finite Groups, Dover Publications, Inc., New York, 1994.  Google Scholar

[4]

J. D. Key and J. Moori, Codes, designs and graphs from the Janko groups J1 and J2, J. Combin. Math. Combin. Comput., 40 (2002), 143-159.   Google Scholar

[5]

J. D. Key and J. Moori, Designs from maximal subgroups and conjugacy classes of finite simple groups, J. Combin. Math. Combin. Comput., 99 (2016), 41-60.   Google Scholar

[6]

J. D. KeyJ. Moori and B. G. Rodrigues, On some designs and codes from primitive representations of some finite simple groups, Combin. Math. Combin. Comput., 45 (2003), 3-19.   Google Scholar

[7]

O. H. King, The subgroup structure of finite classical groups in terms of geometric configurations, in Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 327, Cambridge Univ. Press, Cambridge, 2005, 26-56. doi: 10.1017/CBO9780511734885.003.  Google Scholar

[8]

V. M. Levchuk and Y. N. Nuzhin, The structure of Ree groups, Algebra i Logika, 24 (1985), 26-41.   Google Scholar

[9]

J. Moori, Finite groups, designs and codes, in Information Security, Coding Theory and Related Combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 29, IOS, Amsterdam, 2011,202-230.  Google Scholar

[10]

J. Moori and B. G. Rodrigues, A self-orthogonal doubly even code invariant under McL:2, J. Combin. Theory Ser. A, 110 (2005), 53-69.  doi: 10.1016/j.jcta.2004.10.001.  Google Scholar

[11]

J. Moori and B. G. Rodrigues, Some designs and codes invariant under the simple group Co2, J. Algebra, 316 (2007), 649-661.  doi: 10.1016/j.jalgebra.2007.02.004.  Google Scholar

[12]

J. Moori and B. G. Rodrigues, A self-orthogonal doubly-even code invariant under the McL, Ars Combin., 91 (2009), 321-332.   Google Scholar

[13]

J. Moori and B. G. Rodrigues, On some designs and codes invariant under the Higman-Sims group, Util. Math., 86 (2011), 225-239.   Google Scholar

[14]

J. MooriB. G. RodriguesA. Saeidi and S. Zandi, Some symmetric designs invariant under the small Ree groups, Comm. Algebra, 47 (2019), 2131-2148.  doi: 10.1080/00927872.2018.1530245.  Google Scholar

[15]

J. Moori and A. Saeidi, Some designs and codes invariant under the Tits group, Adv. Math. Commun., 11 (2017), 77-82.  doi: 10.3934/amc.2017003.  Google Scholar

[16]

J. Moori and A. Saeidi, Some design invariant under the Suzuki groups, Util. Math., 109 (2018), 105-114.   Google Scholar

[17]

J. Moori and A. Saeidi, Constructing some design invariant under the PSL2(q), q even, Comm. Algebra, 46 (2018), 160-166.  doi: 10.1080/00927872.2017.1316854.  Google Scholar

[18]

R. Ree, A family of simple groups asssociated with the simple Lie algebra of type (G2), Amer. J. Math, 83 (1961), 432-462.  doi: 10.2307/2372888.  Google Scholar

[19]

D. O. Revin and E. P. Vdovin, On the number of classes of conjugate Hall subgroups in finite simple groups, J. Algebra, 324 (2010), 3614-3652.  doi: 10.1016/j.jalgebra.2010.09.014.  Google Scholar

[20]

H. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc., 121 (1966), 62-89.  doi: 10.2307/1994333.  Google Scholar

[21]

R. A. Wilson, The Finite Simple Groups, Graduate Texts in Mathematics, 251, Springer-Verlag London, Ltd., London, 2009. doi: 10.1007/978-1-84800-988-2.  Google Scholar

[22]

R. A. Wilson, Another new approach to the small Ree groups, Arch. Math. (Basel), 94 (2010), 501-510.  doi: 10.1007/s00013-010-0130-4.  Google Scholar

Table 1.  Non-trivial designs from $G = Ree(q)$ using construction Method 2
$Max$ $t =o(x)$ $v = |x^G|$ $k =| M \cap x^G|$ $ \lambda= \chi_{M_i}(x)$
$M_1$ $t=2$ $q^2(q^2-q+1)$ $q^2$ $q+1$
$M_1$ $t=3$ $(q^3+1)(q-1)$ $q-1$ 1
$M_1$ $t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $\frac{q(q-1)}{2}$ 1
$M_1$ $t=9$ $\frac{q^2(q^3+1)(q-1)}{3}$ $\frac{q^2(q-1)}{3}$ 1
$M_1$ $t=6$ $\frac{q^2(q^3+1)(q-1)}{2}$ $\frac{q^2 (q-1)}{2}$ 1
$M_1$ $t |(q-1)$, $t \ne 2$ ${q^3}(q^3+1)$ $2q^3$ 2
$M_2, M_3$ $ t=2$ $q^2(q^2-q+1) $ $ q^{\mp}$ $\frac{{{q(q^2-1)}}}{6}$
$M_2, M_3$ $t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $ q^{\mp}$ $\frac{q^2}{3}$
$M_2, M_3$ $t=6$ $\frac{q^2(q^3+1)(q-1)}{2}$ $ q^{\mp}$ $\frac{q}{3}$
$M_2, M_3$ $t | q^{\mp}$ ${q^3(q^2-1)q^{\pm}}$ $ 6$ $1$
$M_4$ $ t=2$ $q^2(q^2-q+1) $ $ q^2-q+1$ $q^2-q+1$
$M_4$ $t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $ \frac{q^2-1}{2}$ $q$
$M_4$ $t=6$ $\frac{q^2(q^3+1)(q-1)}{2} $ $ \frac{q^2-1}{2}$ $1$
$M_4$ $t |(q-1)$, $t \ne 2$ $q^3(q^3+1)$ $ q(q+1)$ $1$
$M_4$ $t |\frac{q+1}{2}$, $t \ne 2$ ${q^3(q^2-q+1)(q-1)}$ $ 3q(q-1))$ $3$
$M_5$ $t=2$ $q^2(q^2-q+1) $ $ q+4$ $\frac{{{q(q-1)(q+4)}}}{6}$
$M_5$ $ t=3$ $\frac{{{{q}(q^3+1)(q-1)}}}{2}$ $ q+1$ $ \frac{{{q^2}}}{3}$
$M_5$ $ t=6$ $\frac{{{{q^2}(q^3+1)(q-1)}}}{2}$ $ q+1$ $ \frac{{{q}}}{3}$
$M_5$ $t |\frac{q+1}{2}$, $t \ne 2$ ${q^3(q^2-q+1)(q-1)}$ $ 6$ 1
$M_6$ $t=2$ $q^2(q^2-q+1) $ $ q_0^2(q_0^2-q_0+1)$ $\frac{q(q^2-1)}{q_0(q_0^2-1)}$
$M_6$ $ t=3$ $(q^3+1)(q-1)$ $(q_0^3+1)(q_0-1)$ $ \frac{{{q^3}}}{q_0^3}$
$M_6$ $ t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $\frac{q_0(q_0^3+1)(q_0-1)}{2}$ $ \frac{{{q^2}}}{q_0^2}$
$M_6$ $t= 9$ $\frac{q^2(q^3+1)(q-1)}{3}$ $\frac{q_0^2(q_0^3+1)(q_0-1)}{3}$ $ \frac{{{q}}}{q_0}$
$M_6$ $t= 6$ $\frac{q^2(q^3+1)(q-1)}{2}$ $\frac{q_0^2(q_0^3+1)(q_0-1)}{2}$ $ \frac{{{q}}}{q_0}$
$M_6$ $t |(q_0-1)$, $t \ne 2$ ${q^3(q^3+1)}$ ${q_0^3(q_0^3+1)}$ $ \frac{q-1}{q_0-1} $
$M_6$ $t |\frac{q_0+1}{2}$, $t \ne 2$ ${q^3(q^2-q+1)(q-1)}$ ${q_0^3(q_0^2-q_0+1)(q_0-1)}$ $ \frac{q+1}{q_0+1} $
$^*M_6$ $t|q_0^{\pm}$ ${q^3}\left( {q^2 - 1} \right){q^{\pm}} $ ${q_0^3}\left( {q_0^2 - 1} \right){q_0^{\pm}} $ $ \frac{{q^{\mp}}}{{q_0^{\mp}}} $
$^{**}M_6$ $t|q_0^{\pm}$ ${q^3(q^3+1)}$ ${q_0^3}\left( {q_0^2 - 1} \right){q_0^{\pm}} $ $\frac{q-1}{q_0^{\mp}}$
$Max$ $t =o(x)$ $v = |x^G|$ $k =| M \cap x^G|$ $ \lambda= \chi_{M_i}(x)$
$M_1$ $t=2$ $q^2(q^2-q+1)$ $q^2$ $q+1$
$M_1$ $t=3$ $(q^3+1)(q-1)$ $q-1$ 1
$M_1$ $t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $\frac{q(q-1)}{2}$ 1
$M_1$ $t=9$ $\frac{q^2(q^3+1)(q-1)}{3}$ $\frac{q^2(q-1)}{3}$ 1
$M_1$ $t=6$ $\frac{q^2(q^3+1)(q-1)}{2}$ $\frac{q^2 (q-1)}{2}$ 1
$M_1$ $t |(q-1)$, $t \ne 2$ ${q^3}(q^3+1)$ $2q^3$ 2
$M_2, M_3$ $ t=2$ $q^2(q^2-q+1) $ $ q^{\mp}$ $\frac{{{q(q^2-1)}}}{6}$
$M_2, M_3$ $t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $ q^{\mp}$ $\frac{q^2}{3}$
$M_2, M_3$ $t=6$ $\frac{q^2(q^3+1)(q-1)}{2}$ $ q^{\mp}$ $\frac{q}{3}$
$M_2, M_3$ $t | q^{\mp}$ ${q^3(q^2-1)q^{\pm}}$ $ 6$ $1$
$M_4$ $ t=2$ $q^2(q^2-q+1) $ $ q^2-q+1$ $q^2-q+1$
$M_4$ $t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $ \frac{q^2-1}{2}$ $q$
$M_4$ $t=6$ $\frac{q^2(q^3+1)(q-1)}{2} $ $ \frac{q^2-1}{2}$ $1$
$M_4$ $t |(q-1)$, $t \ne 2$ $q^3(q^3+1)$ $ q(q+1)$ $1$
$M_4$ $t |\frac{q+1}{2}$, $t \ne 2$ ${q^3(q^2-q+1)(q-1)}$ $ 3q(q-1))$ $3$
$M_5$ $t=2$ $q^2(q^2-q+1) $ $ q+4$ $\frac{{{q(q-1)(q+4)}}}{6}$
$M_5$ $ t=3$ $\frac{{{{q}(q^3+1)(q-1)}}}{2}$ $ q+1$ $ \frac{{{q^2}}}{3}$
$M_5$ $ t=6$ $\frac{{{{q^2}(q^3+1)(q-1)}}}{2}$ $ q+1$ $ \frac{{{q}}}{3}$
$M_5$ $t |\frac{q+1}{2}$, $t \ne 2$ ${q^3(q^2-q+1)(q-1)}$ $ 6$ 1
$M_6$ $t=2$ $q^2(q^2-q+1) $ $ q_0^2(q_0^2-q_0+1)$ $\frac{q(q^2-1)}{q_0(q_0^2-1)}$
$M_6$ $ t=3$ $(q^3+1)(q-1)$ $(q_0^3+1)(q_0-1)$ $ \frac{{{q^3}}}{q_0^3}$
$M_6$ $ t=3$ $\frac{q(q^3+1)(q-1)}{2}$ $\frac{q_0(q_0^3+1)(q_0-1)}{2}$ $ \frac{{{q^2}}}{q_0^2}$
$M_6$ $t= 9$ $\frac{q^2(q^3+1)(q-1)}{3}$ $\frac{q_0^2(q_0^3+1)(q_0-1)}{3}$ $ \frac{{{q}}}{q_0}$
$M_6$ $t= 6$ $\frac{q^2(q^3+1)(q-1)}{2}$ $\frac{q_0^2(q_0^3+1)(q_0-1)}{2}$ $ \frac{{{q}}}{q_0}$
$M_6$ $t |(q_0-1)$, $t \ne 2$ ${q^3(q^3+1)}$ ${q_0^3(q_0^3+1)}$ $ \frac{q-1}{q_0-1} $
$M_6$ $t |\frac{q_0+1}{2}$, $t \ne 2$ ${q^3(q^2-q+1)(q-1)}$ ${q_0^3(q_0^2-q_0+1)(q_0-1)}$ $ \frac{q+1}{q_0+1} $
$^*M_6$ $t|q_0^{\pm}$ ${q^3}\left( {q^2 - 1} \right){q^{\pm}} $ ${q_0^3}\left( {q_0^2 - 1} \right){q_0^{\pm}} $ $ \frac{{q^{\mp}}}{{q_0^{\mp}}} $
$^{**}M_6$ $t|q_0^{\pm}$ ${q^3(q^3+1)}$ ${q_0^3}\left( {q_0^2 - 1} \right){q_0^{\pm}} $ $\frac{q-1}{q_0^{\mp}}$
[1]

Yves Guivarc'h. On the spectrum of a large subgroup of a semisimple group. Journal of Modern Dynamics, 2008, 2 (1) : 15-42. doi: 10.3934/jmd.2008.2.15

[2]

Brandon Seward. Every action of a nonamenable group is the factor of a small action. Journal of Modern Dynamics, 2014, 8 (2) : 251-270. doi: 10.3934/jmd.2014.8.251

[3]

Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 2010, 4 (2) : 215-235. doi: 10.3934/amc.2010.4.215

[4]

A. Yu. Ol'shanskii and M. V. Sapir. The conjugacy problem for groups, and Higman embeddings. Electronic Research Announcements, 2003, 9: 40-50.

[5]

Wei Xu, Liying Yu, Gui-Hua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019068

[6]

Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144

[7]

S. A. Krat. On pairs of metrics invariant under a cocompact action of a group. Electronic Research Announcements, 2001, 7: 79-86.

[8]

Eldho K. Thomas, Nadya Markin, Frédérique Oggier. On Abelian group representability of finite groups. Advances in Mathematics of Communications, 2014, 8 (2) : 139-152. doi: 10.3934/amc.2014.8.139

[9]

Mickaël D. Chekroun, Jean Roux. Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3957-3980. doi: 10.3934/dcds.2013.33.3957

[10]

Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9

[11]

Carlos Matheus, Jean-Christophe Yoccoz. The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis. Journal of Modern Dynamics, 2010, 4 (3) : 453-486. doi: 10.3934/jmd.2010.4.453

[12]

Xiaojun Huang, Yuan Lian, Changrong Zhu. A Billingsley-type theorem for the pressure of an action of an amenable group. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 959-993. doi: 10.3934/dcds.2019040

[13]

Martin Pinsonnault. Maximal compact tori in the Hamiltonian group of 4-dimensional symplectic manifolds. Journal of Modern Dynamics, 2008, 2 (3) : 431-455. doi: 10.3934/jmd.2008.2.431

[14]

Kaizhi Wang. Action minimizing stochastic invariant measures for a class of Lagrangian systems. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1211-1223. doi: 10.3934/cpaa.2008.7.1211

[15]

Ernesto Aranda, Pablo Pedregal. Constrained envelope for a general class of design problems. Conference Publications, 2003, 2003 (Special) : 30-41. doi: 10.3934/proc.2003.2003.30

[16]

Yoshikazu Katayama, Colin E. Sutherland and Masamichi Takesaki. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic Research Announcements, 1995, 1: 43-47.

[17]

Alexander Moreto. Complex group algebras of finite groups: Brauer's Problem 1. Electronic Research Announcements, 2005, 11: 34-39.

[18]

Giuseppe Da Prato, Alessandra Lunardi. Maximal dissipativity of a class of elliptic degenerate operators in weighted $L^2$ spaces. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 751-760. doi: 10.3934/dcdsb.2006.6.751

[19]

Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014

[20]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (24)
  • HTML views (23)
  • Cited by (0)

[Back to Top]