[1]
|
J. Ai, T. Honold and H. Liu, The expurgation-augmentation method for constructing good plane subspace codes, preprint, arXiv: 1601.01502.
|
[2]
|
C. Bachoc, A. Passuello and F. Vallentin, Bounds for projective codes from semidefinite programming, Adv. Math. Commun., 7 (2013), 127-145.
doi: 10.3934/amc.2013.7.127.
|
[3]
|
A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Z., 145 (1975), 211-229.
doi: 10.1007/BF01215286.
|
[4]
|
M. Braun, T. Etzion, P. R. J. Östergård, A. Vardy and A. Wassermann, Existence of q-analogs of Steiner systems, Forum Math. Pi, 4 (2016), e7, 14pp.
doi: 10.1017/fmp.2016.5.
|
[5]
|
M. Braun, M. Kiermaier and A. Nakić, On the automorphism group of a binary q-analog of the Fano plane, European J. Combin., 51 (2016), 443-457.
doi: 10.1016/j.ejc.2015.07.014.
|
[6]
|
M. Braun and J. Reichelt, q-analogs of packing designs, J. Combin. Des., 22 (2014), 306-321.
doi: 10.1002/jcd.21376.
|
[7]
|
A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Results in Mathematics and Related Areas, 18, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-74341-2.
|
[8]
|
P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., (1973), 97pp.
|
[9]
|
C. F. Dunkl, An addition theorem for some q-Hahn polynomials, Monatsh. Math., 85 (1978), 5-37.
doi: 10.1007/BF01300958.
|
[10]
|
T. Etzion, On the structure of the q-Fano plane, preprint, arXiv: 1508.01839.
|
[11]
|
T. Etzion, A new approach for examining q-Steiner systems, Electron. J. Combin., 25 (2018), 24pp.
|
[12]
|
T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams, IEEE Trans. Inform. Theory, 55 (2009), 2909-2919.
doi: 10.1109/TIT.2009.2021376.
|
[13]
|
T. Etzion and A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inform. Theory, 57 (2011), 1165-1173.
doi: 10.1109/TIT.2010.2095232.
|
[14]
|
T. Etzion and A. Vardy, On q-analogs of Steiner systems and covering designs, Adv. Math. Commun., 5 (2011), 161-176.
doi: 10.3934/amc.2011.5.161.
|
[15]
|
O. Heden and P. A. Sissokho, On the existence of a (2, 3)-spread in V(7, 2), Ars Combin., 124 (2016), 161-164.
|
[16]
|
D. Heinlein, M. Kiermaier, S. Kurz and A. Wassermann, Tables of subspace codes, preprint, arXiv: 1601.02864.
|
[17]
|
D. Heinlein, M. Kiermaier, S. Kurz and A. Wassermann, A subspace code of size 333 in the setting of a binary q-analog of the Fano plane, Adv. Math. Commun., 13 (2019), 457-475.
doi: 10.3934/amc.2019029.
|
[18]
|
D. G. Higman, Coherent configurations part Ⅰ: Ordinary representation theory, Geometriae Dedicata, 4 (1975), 1-32.
doi: 10.1007/BF00147398.
|
[19]
|
D. G. Higman, Coherent configurations part: Ⅱ: Weights, Geometriae Dedicata, 5 (1976), 413-424.
doi: 10.1007/BF00150773.
|
[20]
|
D. G. Higman, Coherent algebras, Linear Algebra Appl., 93 (1987), 209-239.
doi: 10.1016/S0024-3795(87)90326-0.
|
[21]
|
S. A. Hobart, Bounds on subsets of coherent configurations, Michigan Math. J., 58 (2009), 231-239.
doi: 10.1307/mmj/1242071690.
|
[22]
|
S. A. Hobart and J. Williford, Tightness in subset bounds for coherent configurations, J. Algebraic Combin., 39 (2014), 647-658.
doi: 10.1007/s10801-013-0459-4.
|
[23]
|
T. Honold and M. Kiermaier, On putative q-analogues of the Fano plane and related combinatorial structures, in Dynamical Systems, Number Theory and Applications, World Sci. Publ., Hackensack, NJ, 2016,141–175.
|
[24]
|
T. Honold, M. Kiermaier and S. Kurz, Constructions and bounds for mixed-dimension subspace codes, Adv. Math. Commun., 10 (2016), 649-682.
doi: 10.3934/amc.2016033.
|
[25]
|
T. Honold, M. Kiermaier and S. Kurz, Johnson type bounds for mixed dimension subspace codes, preprint, arXiv: 1808.03580.
|
[26]
|
M. Kiermaier, S. Kurz and A. Wassermann, The order of the automorphism group of a binary q-analog of the Fano plane is at most two, Des. Codes Cryptogr., 86 (2018), 239-250.
doi: 10.1007/s10623-017-0360-6.
|
[27]
|
M. Kiermaier and M. O. Pavčević, Intersection numbers for subspace designs, J. Combin. Des., 23 (2015), 463-480.
doi: 10.1002/jcd.21403.
|
[28]
|
A. Kohnert and S. Kurz, Construction of large constant dimension codes with a prescribed minimum distance, in Mathematical Methods in Computer Science, Lecture Notes in Comput. Sci., 5393, Springer, Berlin, 2008, 31–42.
doi: 10.1007/978-3-540-89994-5_4.
|
[29]
|
R. Kötter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591.
doi: 10.1109/TIT.2008.926449.
|
[30]
|
H. Liu and T. Honold, A new approach to the main problem of subspace coding, 9th International Conference on Communications and Networking in China, 2014. Available at arXiv: 1408.1181.
|
[31]
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, 16, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
|
[32]
|
K. Metsch, Bose-Burton type theorems for finite projective, affine and polar spaces, in
Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 267, Cambridge Univ. Press,
Cambridge, 1999, 137-166.
|
[33]
|
M. Miyakawa, A. Munemasa and S. Yoshiara, On a class of small 2-designs over GF(q), J. Combin. Des., 3 (1995), 61-77.
doi: 10.1002/jcd.3180030108.
|
[34]
|
A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory, 51 (2005), 2859-2866.
doi: 10.1109/TIT.2005.851748.
|
[35]
|
S. Thomas, Designs over finite fields, Geom. Dedicata, 24 (1987), 237-242.
doi: 10.1007/BF00150939.
|
[36]
|
S. Thomas, Designs and partial geometries over finite fields, Geom. Dedicata, 63 (1996), 247-253.
doi: 10.1007/BF00181415.
|
[37]
|
L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), 49-95.
doi: 10.1137/1038003.
|
[38]
|
Y. Watanabe, An Algebraic Study of Association Schemes and Its Applications, Master's thesis, Tohoku University, 2015.
|
[39]
|
M. Yamashita, K. Fujisawa, M. Fukuda, K. Kobayashi, K. Nakata and M. Nakata, Latest developments in the SDPA family for solving large-scale SDPs, in Handbook on Semidefinite, Conic and Polynomial Optimization, Internat. Ser. Oper. Res. Management Sci., 166, Springer, New York, 2012,687–713.
doi: 10.1007/978-1-4614-0769-0_24.
|