February  2021, 15(1): 1-8. doi: 10.3934/amc.2020038

New bounds on the minimum distance of cyclic codes

School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371

* Corresponding author

Received  December 2018 Revised  June 2019 Published  February 2021 Early access  November 2019

Fund Project: The authors are supported by NTU Research Grant M4080456

Two bounds on the minimum distance of cyclic codes are proposed. The first one generalizes the Roos bound by embedding the given cyclic code into a cyclic product code. The second bound also uses a second cyclic code, namely the non-zero-locator code, but is not directly related to cyclic product codes and it generalizes a special case of the Roos bound.

Citation: San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038
References:
[1]

R. C. Bose and D. K. R. Chaudhuri, On a class of error correcting binary group code, Information and Control, 3 (1960), 68-79.  doi: 10.1016/S0019-9958(60)90287-4.

[2]

H. O. Burton and E. J. Weldon, Cyclic product codes, IEEE Trans. Information Theory, 11 (1965), 433-439.  doi: 10.1109/tit.1965.1053802.

[3]

C. Hartmann and K. Tzeng, Generalizations of the BCH bound, Information and Control, 20 (1972), 489-498.  doi: 10.1016/S0019-9958(72)90887-X.

[4]

A. Hocquenghem, Codes correcteurs d'erreurs, Chiffres, 2 (1959), 147-156. 

[5]

S. Lin and E. J. Weldon, Further results on cyclic product codes, IEEE Trans. Information Theory, 16 (1970), 452-459.  doi: 10.1109/tit.1970.1054491.

[6]

C. Roos, A generalization of the BCH bound for cyclic codes, including the Hartmann-Tzeng bound, J. Combin. Theory Ser. A, 33 (1982), 229-232.  doi: 10.1016/0097-3165(82)90014-0.

[7]

C. Roos, A new lower bound for the minimum distance of a cyclic code, IEEE Trans. Inform. Theory, 29 (1983), 330-332.  doi: 10.1109/TIT.1983.1056672.

[8]

A. Zeh and S. V. Bezzateev, A new bound on the minimum distance of cyclic codes using small-minimum-distance cyclic codes, Des. Codes Cryptogr., 71 (2014), 229-246.  doi: 10.1007/s10623-012-9721-3.

[9]

A. Zeh, A. Wachter-Zeh, M. Gadouleau and S. V. Bezzateev, Generalizing bounds on the minimum distance of cyclic codes using cyclic product codes, Proc. IEEE ISIT, Istanbul, Turkey, 2013,126–130. doi: 10.1109/ISIT.2013.6620201.

show all references

References:
[1]

R. C. Bose and D. K. R. Chaudhuri, On a class of error correcting binary group code, Information and Control, 3 (1960), 68-79.  doi: 10.1016/S0019-9958(60)90287-4.

[2]

H. O. Burton and E. J. Weldon, Cyclic product codes, IEEE Trans. Information Theory, 11 (1965), 433-439.  doi: 10.1109/tit.1965.1053802.

[3]

C. Hartmann and K. Tzeng, Generalizations of the BCH bound, Information and Control, 20 (1972), 489-498.  doi: 10.1016/S0019-9958(72)90887-X.

[4]

A. Hocquenghem, Codes correcteurs d'erreurs, Chiffres, 2 (1959), 147-156. 

[5]

S. Lin and E. J. Weldon, Further results on cyclic product codes, IEEE Trans. Information Theory, 16 (1970), 452-459.  doi: 10.1109/tit.1970.1054491.

[6]

C. Roos, A generalization of the BCH bound for cyclic codes, including the Hartmann-Tzeng bound, J. Combin. Theory Ser. A, 33 (1982), 229-232.  doi: 10.1016/0097-3165(82)90014-0.

[7]

C. Roos, A new lower bound for the minimum distance of a cyclic code, IEEE Trans. Inform. Theory, 29 (1983), 330-332.  doi: 10.1109/TIT.1983.1056672.

[8]

A. Zeh and S. V. Bezzateev, A new bound on the minimum distance of cyclic codes using small-minimum-distance cyclic codes, Des. Codes Cryptogr., 71 (2014), 229-246.  doi: 10.1007/s10623-012-9721-3.

[9]

A. Zeh, A. Wachter-Zeh, M. Gadouleau and S. V. Bezzateev, Generalizing bounds on the minimum distance of cyclic codes using cyclic product codes, Proc. IEEE ISIT, Istanbul, Turkey, 2013,126–130. doi: 10.1109/ISIT.2013.6620201.

[1]

José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459-474. doi: 10.3934/amc.2016018

[2]

Carlos Munuera, Fernando Torres. A note on the order bound on the minimum distance of AG codes and acute semigroups. Advances in Mathematics of Communications, 2008, 2 (2) : 175-181. doi: 10.3934/amc.2008.2.175

[3]

Lisha Wang, Nian Li, Linjie Xu, Zhao Hu, Xiangyong Zeng, Liujie Nie. Several new classes of optimal ternary cyclic codes with minimum distance four. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022052

[4]

Jinmei Fan, Yanhai Zhang. Optimal quinary negacyclic codes with minimum distance four. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021043

[5]

Roland D. Barrolleta, Emilio Suárez-Canedo, Leo Storme, Peter Vandendriessche. On primitive constant dimension codes and a geometrical sunflower bound. Advances in Mathematics of Communications, 2017, 11 (4) : 757-765. doi: 10.3934/amc.2017055

[6]

Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165-174. doi: 10.3934/amc.2012.6.165

[7]

Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275

[8]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[9]

J. De Beule, K. Metsch, L. Storme. Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound. Advances in Mathematics of Communications, 2008, 2 (3) : 261-272. doi: 10.3934/amc.2008.2.261

[10]

Florent Foucaud, Tero Laihonen, Aline Parreau. An improved lower bound for $(1,\leq 2)$-identifying codes in the king grid. Advances in Mathematics of Communications, 2014, 8 (1) : 35-52. doi: 10.3934/amc.2014.8.35

[11]

Yael Ben-Haim, Simon Litsyn. A new upper bound on the rate of non-binary codes. Advances in Mathematics of Communications, 2007, 1 (1) : 83-92. doi: 10.3934/amc.2007.1.83

[12]

Fernando Hernando, Tom Høholdt, Diego Ruano. List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes. Advances in Mathematics of Communications, 2012, 6 (3) : 259-272. doi: 10.3934/amc.2012.6.259

[13]

Xiaowei Su, Lidong Wang, Zihong Tian. New bound and constructions for geometric orthogonal codes and geometric 180-rotating orthogonal codes. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022078

[14]

Claude Carlet. Expressing the minimum distance, weight distribution and covering radius of codes by means of the algebraic and numerical normal forms of their indicators. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022047

[15]

Mohammed Mesk, Ali Moussaoui. On an upper bound for the spreading speed. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3897-3912. doi: 10.3934/dcdsb.2021210

[16]

Gang Wang, Deng-Ming Xu, Fang-Wei Fu. Constructions of asymptotically optimal codebooks with respect to Welch bound and Levenshtein bound. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021065

[17]

Mikko Kaasalainen. Dynamical tomography of gravitationally bound systems. Inverse Problems and Imaging, 2008, 2 (4) : 527-546. doi: 10.3934/ipi.2008.2.527

[18]

Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial and Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499

[19]

Marcin Dumnicki, Łucja Farnik, Halszka Tutaj-Gasińska. Asymptotic Hilbert polynomial and a bound for Waldschmidt constants. Electronic Research Announcements, 2016, 23: 8-18. doi: 10.3934/era.2016.23.002

[20]

Miklós Horváth, Márton Kiss. A bound for ratios of eigenvalues of Schrodinger operators on the real line. Conference Publications, 2005, 2005 (Special) : 403-409. doi: 10.3934/proc.2005.2005.403

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (533)
  • HTML views (592)
  • Cited by (0)

Other articles
by authors

[Back to Top]