doi: 10.3934/amc.2020038

New bounds on the minimum distance of cyclic codes

School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371

* Corresponding author

Received  December 2018 Revised  June 2019 Published  November 2019

Fund Project: The authors are supported by NTU Research Grant M4080456

Two bounds on the minimum distance of cyclic codes are proposed. The first one generalizes the Roos bound by embedding the given cyclic code into a cyclic product code. The second bound also uses a second cyclic code, namely the non-zero-locator code, but is not directly related to cyclic product codes and it generalizes a special case of the Roos bound.

Citation: San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2020038
References:
[1]

R. C. Bose and D. K. R. Chaudhuri, On a class of error correcting binary group code, Information and Control, 3 (1960), 68-79.  doi: 10.1016/S0019-9958(60)90287-4.  Google Scholar

[2]

H. O. Burton and E. J. Weldon, Cyclic product codes, IEEE Trans. Information Theory, 11 (1965), 433-439.  doi: 10.1109/tit.1965.1053802.  Google Scholar

[3]

C. Hartmann and K. Tzeng, Generalizations of the BCH bound, Information and Control, 20 (1972), 489-498.  doi: 10.1016/S0019-9958(72)90887-X.  Google Scholar

[4]

A. Hocquenghem, Codes correcteurs d'erreurs, Chiffres, 2 (1959), 147-156.   Google Scholar

[5]

S. Lin and E. J. Weldon, Further results on cyclic product codes, IEEE Trans. Information Theory, 16 (1970), 452-459.  doi: 10.1109/tit.1970.1054491.  Google Scholar

[6]

C. Roos, A generalization of the BCH bound for cyclic codes, including the Hartmann-Tzeng bound, J. Combin. Theory Ser. A, 33 (1982), 229-232.  doi: 10.1016/0097-3165(82)90014-0.  Google Scholar

[7]

C. Roos, A new lower bound for the minimum distance of a cyclic code, IEEE Trans. Inform. Theory, 29 (1983), 330-332.  doi: 10.1109/TIT.1983.1056672.  Google Scholar

[8]

A. Zeh and S. V. Bezzateev, A new bound on the minimum distance of cyclic codes using small-minimum-distance cyclic codes, Des. Codes Cryptogr., 71 (2014), 229-246.  doi: 10.1007/s10623-012-9721-3.  Google Scholar

[9]

A. Zeh, A. Wachter-Zeh, M. Gadouleau and S. V. Bezzateev, Generalizing bounds on the minimum distance of cyclic codes using cyclic product codes, Proc. IEEE ISIT, Istanbul, Turkey, 2013,126–130. doi: 10.1109/ISIT.2013.6620201.  Google Scholar

show all references

References:
[1]

R. C. Bose and D. K. R. Chaudhuri, On a class of error correcting binary group code, Information and Control, 3 (1960), 68-79.  doi: 10.1016/S0019-9958(60)90287-4.  Google Scholar

[2]

H. O. Burton and E. J. Weldon, Cyclic product codes, IEEE Trans. Information Theory, 11 (1965), 433-439.  doi: 10.1109/tit.1965.1053802.  Google Scholar

[3]

C. Hartmann and K. Tzeng, Generalizations of the BCH bound, Information and Control, 20 (1972), 489-498.  doi: 10.1016/S0019-9958(72)90887-X.  Google Scholar

[4]

A. Hocquenghem, Codes correcteurs d'erreurs, Chiffres, 2 (1959), 147-156.   Google Scholar

[5]

S. Lin and E. J. Weldon, Further results on cyclic product codes, IEEE Trans. Information Theory, 16 (1970), 452-459.  doi: 10.1109/tit.1970.1054491.  Google Scholar

[6]

C. Roos, A generalization of the BCH bound for cyclic codes, including the Hartmann-Tzeng bound, J. Combin. Theory Ser. A, 33 (1982), 229-232.  doi: 10.1016/0097-3165(82)90014-0.  Google Scholar

[7]

C. Roos, A new lower bound for the minimum distance of a cyclic code, IEEE Trans. Inform. Theory, 29 (1983), 330-332.  doi: 10.1109/TIT.1983.1056672.  Google Scholar

[8]

A. Zeh and S. V. Bezzateev, A new bound on the minimum distance of cyclic codes using small-minimum-distance cyclic codes, Des. Codes Cryptogr., 71 (2014), 229-246.  doi: 10.1007/s10623-012-9721-3.  Google Scholar

[9]

A. Zeh, A. Wachter-Zeh, M. Gadouleau and S. V. Bezzateev, Generalizing bounds on the minimum distance of cyclic codes using cyclic product codes, Proc. IEEE ISIT, Istanbul, Turkey, 2013,126–130. doi: 10.1109/ISIT.2013.6620201.  Google Scholar

[1]

José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459-474. doi: 10.3934/amc.2016018

[2]

Carlos Munuera, Fernando Torres. A note on the order bound on the minimum distance of AG codes and acute semigroups. Advances in Mathematics of Communications, 2008, 2 (2) : 175-181. doi: 10.3934/amc.2008.2.175

[3]

Roland D. Barrolleta, Emilio Suárez-Canedo, Leo Storme, Peter Vandendriessche. On primitive constant dimension codes and a geometrical sunflower bound. Advances in Mathematics of Communications, 2017, 11 (4) : 757-765. doi: 10.3934/amc.2017055

[4]

Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165-174. doi: 10.3934/amc.2012.6.165

[5]

Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275

[6]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[7]

J. De Beule, K. Metsch, L. Storme. Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound. Advances in Mathematics of Communications, 2008, 2 (3) : 261-272. doi: 10.3934/amc.2008.2.261

[8]

Florent Foucaud, Tero Laihonen, Aline Parreau. An improved lower bound for $(1,\leq 2)$-identifying codes in the king grid. Advances in Mathematics of Communications, 2014, 8 (1) : 35-52. doi: 10.3934/amc.2014.8.35

[9]

Yael Ben-Haim, Simon Litsyn. A new upper bound on the rate of non-binary codes. Advances in Mathematics of Communications, 2007, 1 (1) : 83-92. doi: 10.3934/amc.2007.1.83

[10]

Fernando Hernando, Tom Høholdt, Diego Ruano. List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes. Advances in Mathematics of Communications, 2012, 6 (3) : 259-272. doi: 10.3934/amc.2012.6.259

[11]

Mikko Kaasalainen. Dynamical tomography of gravitationally bound systems. Inverse Problems & Imaging, 2008, 2 (4) : 527-546. doi: 10.3934/ipi.2008.2.527

[12]

Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial & Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499

[13]

Marcin Dumnicki, Łucja Farnik, Halszka Tutaj-Gasińska. Asymptotic Hilbert polynomial and a bound for Waldschmidt constants. Electronic Research Announcements, 2016, 23: 8-18. doi: 10.3934/era.2016.23.002

[14]

Miklós Horváth, Márton Kiss. A bound for ratios of eigenvalues of Schrodinger operators on the real line. Conference Publications, 2005, 2005 (Special) : 403-409. doi: 10.3934/proc.2005.2005.403

[15]

John Fogarty. On Noether's bound for polynomial invariants of a finite group. Electronic Research Announcements, 2001, 7: 5-7.

[16]

Carmen Cortázar, Marta García-Huidobro, Pilar Herreros. On the uniqueness of bound state solutions of a semilinear equation with weights. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6761-6784. doi: 10.3934/dcds.2019294

[17]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[18]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[19]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[20]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

2018 Impact Factor: 0.879

Article outline

[Back to Top]