-
Previous Article
A new class of $ p $-ary regular bent functions
- AMC Home
- This Issue
-
Next Article
Golay complementary sets with large zero odd-periodic correlation zones
On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $
Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain |
We introduce the Hadamard full propelinear codes that factorize as direct product of groups such that their associated group is $ C_{2t}\times C_2 $. We study the rank, the dimension of the kernel, and the structure of these codes. For several specific parameters we establish some links from circulant Hadamard matrices and the nonexistence of the codes we study. We prove that the dimension of the kernel of these codes is bounded by $ 3 $ if the code is nonlinear. We also get an equivalence between circulant complex Hadamard matrix and a type of Hadamard full propelinear code, and we find a new example of circulant complex Hadamard matrix of order $ 16 $.
References:
[1] |
V. Álvarez, F. Gudiel and M. B. Güemes,
On $\mathbb{Z}_t\times \mathbb{Z}_2^2$-cocyclic Hadamard matrices, J. Combin. Des., 23 (2015), 352-368.
doi: 10.1002/jcd.21406. |
[2] |
K. T. Arasu, W. de Launey and S. L. Ma,
On circulant complex Hadamard matrices, Des. Codes Cryptogr., 25 (2002), 123-142.
doi: 10.1023/A:1013817013980. |
[3] |
E. F. Assmus, Jr and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9781316529836.![]() ![]() |
[4] |
I. Bailera, J. Borges and J. Rifà,
About some Hadamard full propelinear (2t, 2, 2)-codes. Rank and kernel, Electron. Notes Discret. Math., 54 (2016), 319-324.
doi: 10.1016/j.endm.2016.09.055. |
[5] |
A. Baliga and K. J. Horadam,
Cocyclic Hadamard matrices over $ {\mathbb{Z}}_t \times {\mathbb{Z}}_2^2$, Australas. J. Combin., 11 (1995), 123-134.
|
[6] |
S. Barrera Acevedo and H. Dietrich,
Perfect sequences over the quaternions and $(4n, 2, 4n, 2n)$-relative difference sets in $C_n \times Q_8$, Cryptogr. Commun., 10 (2018), 357-368.
doi: 10.1007/s12095-017-0224-y. |
[7] |
J. Borges, I. Y. Mogilnykh, J. Rifà and F. I. Solov'eva,
Structural properties of binary propelinear codes, Adv. Math. Commun., 6 (2012), 329-346.
doi: 10.3934/amc.2012.6.329. |
[8] |
W. Bosma, J. J. Cannon, C. Fieker and A. Steel, Handbook of Magma Functions, Edition 2.22, 2016. Google Scholar |
[9] |
A. T. Butson,
Relations among generalized Hadamard matrices, relative difference sets, and maximal length linear recurring sequences, Canad. J. Math., 15 (1963), 42-48.
doi: 10.4153/CJM-1963-005-3. |
[10] |
W. de Launey, D. L. Flannery and K. J. Horadam,
Cocyclic Hadamard matrices and difference sets, Discret. Appl. Math., 102 (2002), 47-61.
doi: 10.1016/S0166-218X(99)00230-9. |
[11] |
J. F. Dillon,
Some REALLY beautiful Hadamard matrices, Cryptogr. Commun., 2 (2010), 271-292.
doi: 10.1007/s12095-010-0031-1. |
[12] |
D. L. Flannery,
Cocyclic Hadamard matrices and Hadamard groups are equivalent, J. Algebra, 192 (1997), 749-779.
doi: 10.1006/jabr.1996.6949. |
[13] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() |
[14] |
N. Ito,
On Hadamard groups, J. Algebra, 168 (1994), 981-987.
doi: 10.1006/jabr.1994.1266. |
[15] |
N. Ito,
On Hadamard groups. II, J. Algebra, 169 (1994), 936-942.
doi: 10.1006/jabr.1994.1319. |
[16] |
N. Ito,
On Hadamard groups. III, Kyushu J. Math., 51 (1997), 369-379.
doi: 10.2206/kyushujm.51.369. |
[17] |
R. G. Kraemer,
Proof of a conjecture on Hadamard $2$-groups, J. Combin. Theory Ser. A, 63 (1993), 1-10.
doi: 10.1016/0097-3165(93)90012-W. |
[18] |
P. Ó Catháin and M. Röder,
The cocyclic Hadamard matrices of order less than 40, Des. Codes Cryptogr., 58 (2011), 73-88.
doi: 10.1007/s10623-010-9385-9. |
[19] |
K. T. Phelps, J. Rifà and M. Villanueva,
Hadamard codes of length $2^ts$ ($s$ odd). Rank and kernel, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Comput. Sci., Springer, Berlin, 3857 (2006), 328-337.
doi: 10.1007/11617983_32. |
[20] |
J. Rifà, Circulant Hadamard matrices as HFP-codes of type $C_4n\times C_2$, preprint, arXiv: 1711.09373v1. Google Scholar |
[21] |
J. Rifà, J. M. Basart and L. Huguet,
On completely regular propelinear codes, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. LNCS, Springer, Berlin, 357 (1989), 341-355.
doi: 10.1007/3-540-51083-4_71. |
[22] |
J. Rifà and E. Suárez Canedo,
Hadamard full propelinear codes of type Q. Rank and kernel, Des. Codes Cryptogr., 86 (2018), 1905-1921.
doi: 10.1007/s10623-017-0429-2. |
[23] |
J. Rifà i Coma and E. Suárez Canedo,
About a class of Hadamard propelinear codes, Conference on Discrete Mathematics and Computer Science, Electron. Notes Discret. Math. Elsevier Sci. B. V., Amsterdam, 46 (2014), 289-296.
doi: 10.1016/j.endm.2014.08.038. |
[24] |
H. J. Ryser, Combinatorial Mathematics, The Carus Mathematical Monographs, No. 14 Published by The Mathematical Association of America, New York, 1963.
doi: 10.1017/S0013091500011299. |
[25] |
B. Schmidt,
Williamson matrices and a conjecture of Ito's, Des. Codes Cryptogr., 17 (1999), 61-68.
doi: 10.1023/A:1008398319853. |
[26] |
R. J. Turyn,
Character sums and difference sets, Pacific J. Math., 15 (1965), 319-346.
doi: 10.2140/pjm.1965.15.319. |
show all references
References:
[1] |
V. Álvarez, F. Gudiel and M. B. Güemes,
On $\mathbb{Z}_t\times \mathbb{Z}_2^2$-cocyclic Hadamard matrices, J. Combin. Des., 23 (2015), 352-368.
doi: 10.1002/jcd.21406. |
[2] |
K. T. Arasu, W. de Launey and S. L. Ma,
On circulant complex Hadamard matrices, Des. Codes Cryptogr., 25 (2002), 123-142.
doi: 10.1023/A:1013817013980. |
[3] |
E. F. Assmus, Jr and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9781316529836.![]() ![]() |
[4] |
I. Bailera, J. Borges and J. Rifà,
About some Hadamard full propelinear (2t, 2, 2)-codes. Rank and kernel, Electron. Notes Discret. Math., 54 (2016), 319-324.
doi: 10.1016/j.endm.2016.09.055. |
[5] |
A. Baliga and K. J. Horadam,
Cocyclic Hadamard matrices over $ {\mathbb{Z}}_t \times {\mathbb{Z}}_2^2$, Australas. J. Combin., 11 (1995), 123-134.
|
[6] |
S. Barrera Acevedo and H. Dietrich,
Perfect sequences over the quaternions and $(4n, 2, 4n, 2n)$-relative difference sets in $C_n \times Q_8$, Cryptogr. Commun., 10 (2018), 357-368.
doi: 10.1007/s12095-017-0224-y. |
[7] |
J. Borges, I. Y. Mogilnykh, J. Rifà and F. I. Solov'eva,
Structural properties of binary propelinear codes, Adv. Math. Commun., 6 (2012), 329-346.
doi: 10.3934/amc.2012.6.329. |
[8] |
W. Bosma, J. J. Cannon, C. Fieker and A. Steel, Handbook of Magma Functions, Edition 2.22, 2016. Google Scholar |
[9] |
A. T. Butson,
Relations among generalized Hadamard matrices, relative difference sets, and maximal length linear recurring sequences, Canad. J. Math., 15 (1963), 42-48.
doi: 10.4153/CJM-1963-005-3. |
[10] |
W. de Launey, D. L. Flannery and K. J. Horadam,
Cocyclic Hadamard matrices and difference sets, Discret. Appl. Math., 102 (2002), 47-61.
doi: 10.1016/S0166-218X(99)00230-9. |
[11] |
J. F. Dillon,
Some REALLY beautiful Hadamard matrices, Cryptogr. Commun., 2 (2010), 271-292.
doi: 10.1007/s12095-010-0031-1. |
[12] |
D. L. Flannery,
Cocyclic Hadamard matrices and Hadamard groups are equivalent, J. Algebra, 192 (1997), 749-779.
doi: 10.1006/jabr.1996.6949. |
[13] |
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.![]() ![]() |
[14] |
N. Ito,
On Hadamard groups, J. Algebra, 168 (1994), 981-987.
doi: 10.1006/jabr.1994.1266. |
[15] |
N. Ito,
On Hadamard groups. II, J. Algebra, 169 (1994), 936-942.
doi: 10.1006/jabr.1994.1319. |
[16] |
N. Ito,
On Hadamard groups. III, Kyushu J. Math., 51 (1997), 369-379.
doi: 10.2206/kyushujm.51.369. |
[17] |
R. G. Kraemer,
Proof of a conjecture on Hadamard $2$-groups, J. Combin. Theory Ser. A, 63 (1993), 1-10.
doi: 10.1016/0097-3165(93)90012-W. |
[18] |
P. Ó Catháin and M. Röder,
The cocyclic Hadamard matrices of order less than 40, Des. Codes Cryptogr., 58 (2011), 73-88.
doi: 10.1007/s10623-010-9385-9. |
[19] |
K. T. Phelps, J. Rifà and M. Villanueva,
Hadamard codes of length $2^ts$ ($s$ odd). Rank and kernel, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Comput. Sci., Springer, Berlin, 3857 (2006), 328-337.
doi: 10.1007/11617983_32. |
[20] |
J. Rifà, Circulant Hadamard matrices as HFP-codes of type $C_4n\times C_2$, preprint, arXiv: 1711.09373v1. Google Scholar |
[21] |
J. Rifà, J. M. Basart and L. Huguet,
On completely regular propelinear codes, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. LNCS, Springer, Berlin, 357 (1989), 341-355.
doi: 10.1007/3-540-51083-4_71. |
[22] |
J. Rifà and E. Suárez Canedo,
Hadamard full propelinear codes of type Q. Rank and kernel, Des. Codes Cryptogr., 86 (2018), 1905-1921.
doi: 10.1007/s10623-017-0429-2. |
[23] |
J. Rifà i Coma and E. Suárez Canedo,
About a class of Hadamard propelinear codes, Conference on Discrete Mathematics and Computer Science, Electron. Notes Discret. Math. Elsevier Sci. B. V., Amsterdam, 46 (2014), 289-296.
doi: 10.1016/j.endm.2014.08.038. |
[24] |
H. J. Ryser, Combinatorial Mathematics, The Carus Mathematical Monographs, No. 14 Published by The Mathematical Association of America, New York, 1963.
doi: 10.1017/S0013091500011299. |
[25] |
B. Schmidt,
Williamson matrices and a conjecture of Ito's, Des. Codes Cryptogr., 17 (1999), 61-68.
doi: 10.1023/A:1008398319853. |
[26] |
R. J. Turyn,
Character sums and difference sets, Pacific J. Math., 15 (1965), 319-346.
doi: 10.2140/pjm.1965.15.319. |
even | |||
even square | |||
even | |||
odd |
even | |||
even square | |||
even | |||
odd |
t | ||||||||
1 | 3 | 3 | 3 | 3 | 3 | 3 | x | x |
2 | 4 | 4 | $\checkmark$ | $\checkmark$ | 4 | 4 | - | - |
3 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 11 | 1 |
4 | x | x | 5 | 5 | 7 | 2 | - | - |
6 | 3 | |||||||
5 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 19 | 1 |
6 | x | x | $\checkmark$ | $\checkmark$ | x | x | - | - |
7 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 27 | 1 |
8 | x | x | $\checkmark$ | $\checkmark$ | 11 | 2 | - | - |
13 | 1 | |||||||
9 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 35 | 1 |
10 | x | x | $\checkmark$ | $\checkmark$ | x | x | - | - |
t | ||||||||
1 | 3 | 3 | 3 | 3 | 3 | 3 | x | x |
2 | 4 | 4 | $\checkmark$ | $\checkmark$ | 4 | 4 | - | - |
3 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 11 | 1 |
4 | x | x | 5 | 5 | 7 | 2 | - | - |
6 | 3 | |||||||
5 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 19 | 1 |
6 | x | x | $\checkmark$ | $\checkmark$ | x | x | - | - |
7 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 27 | 1 |
8 | x | x | $\checkmark$ | $\checkmark$ | 11 | 2 | - | - |
13 | 1 | |||||||
9 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 35 | 1 |
10 | x | x | $\checkmark$ | $\checkmark$ | x | x | - | - |
[1] |
Christos Koukouvinos, Dimitris E. Simos. Construction of new self-dual codes over $GF(5)$ using skew-Hadamard matrices. Advances in Mathematics of Communications, 2009, 3 (3) : 251-263. doi: 10.3934/amc.2009.3.251 |
[2] |
Ferenc Szöllősi. On quaternary complex Hadamard matrices of small orders. Advances in Mathematics of Communications, 2011, 5 (2) : 309-315. doi: 10.3934/amc.2011.5.309 |
[3] |
Gabriele Link. Hopf-Tsuji-Sullivan dichotomy for quotients of Hadamard spaces with a rank one isometry. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5577-5613. doi: 10.3934/dcds.2018245 |
[4] |
Olof Heden, Denis S. Krotov. On the structure of non-full-rank perfect $q$-ary codes. Advances in Mathematics of Communications, 2011, 5 (2) : 149-156. doi: 10.3934/amc.2011.5.149 |
[5] |
Joaquim Borges, Ivan Yu. Mogilnykh, Josep Rifà, Faina I. Solov'eva. Structural properties of binary propelinear codes. Advances in Mathematics of Communications, 2012, 6 (3) : 329-346. doi: 10.3934/amc.2012.6.329 |
[6] |
Joško Mandić, Tanja Vučičić. On the existence of Hadamard difference sets in groups of order 400. Advances in Mathematics of Communications, 2016, 10 (3) : 547-554. doi: 10.3934/amc.2016025 |
[7] |
Francis C. Motta, Patrick D. Shipman. Informing the structure of complex Hadamard matrix spaces using a flow. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2349-2364. doi: 10.3934/dcdss.2019147 |
[8] |
Shu-Lin Lyu. On the Hermite--Hadamard inequality for convex functions of two variables. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 1-8. doi: 10.3934/naco.2014.4.1 |
[9] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296 |
[10] |
Mariantonia Cotronei, Tomas Sauer. Full rank filters and polynomial reproduction. Communications on Pure & Applied Analysis, 2007, 6 (3) : 667-687. doi: 10.3934/cpaa.2007.6.667 |
[11] |
Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018 |
[12] |
Qingsong Duan, Mengwei Xu, Liwei Zhang, Sainan Zhang. Hadamard directional differentiability of the optimal value of a linear second-order conic programming problem. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020108 |
[13] |
Andrew R. Becklin, Mohammad A. Rammaha. Hadamard well-posedness for a structure acoustic model with a supercritical source and damping terms. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020093 |
[14] |
Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033 |
[15] |
S. S. Dragomir, I. Gomm. Some new bounds for two mappings related to the Hermite-Hadamard inequality for convex functions. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 271-278. doi: 10.3934/naco.2012.2.271 |
[16] |
Simon Foucart, Richard G. Lynch. Recovering low-rank matrices from binary measurements. Inverse Problems & Imaging, 2019, 13 (4) : 703-720. doi: 10.3934/ipi.2019032 |
[17] |
Alessio Fiscella, Enzo Vitillaro. Local Hadamard well--posedness and blow--up for reaction--diffusion equations with non--linear dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5015-5047. doi: 10.3934/dcds.2013.33.5015 |
[18] |
Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020118 |
[19] |
John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019 |
[20] |
Dean Crnković, Ronan Egan, Andrea Švob. Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in Mathematics of Communications, 2020, 14 (4) : 591-602. doi: 10.3934/amc.2020032 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]