Bent functions have many important applications in cryptography and coding theory. This paper considers a class of $ p $-ary functions with the Dillon exponent of the form
$ f(x) = \sum\limits_{i = 0}^{q-1}(Tr^n_1(a_1x^{(r i+s)(q-1)})+Tr^n_1(a_2x^{(r i+s)(q-1)+\frac{q^2-1}{2}}))+bx^{\frac{q^2-1}{2}}, $
where $ n = 2m $, $ q = p^m $, $ p $ is an odd prime, $ a_1,a_2\in \mathbb{F}_{p^n} $, and $ b\in \mathbb{F}_p $. With the help of Kloosterman sums, we present an explicit characterization of these $ p $-ary regular bent functions for the case $ gcd(s-r,\frac{q+1}{2}) = 1 $ and $ gcd(r,q+1) = 1 $ or $ 2 $. Our results generalize results of Li et al. [IEEE Trans. Inf. Theory 59 (2013) 1818-1831].
Citation: |
[1] |
A. Canteaut, P. Charpin and G. M. Kyureghyan, A new class of monomial bent functions, Finite Fields Appl., 14 (2008), 221-241.
doi: 10.1016/j.ffa.2007.02.004.![]() ![]() ![]() |
[2] |
P. Charpin and G. M. Kyureghyan, Cubic monomial bent functions: A subclass of $\mathcal{M}$, SIAM J. Discr. Math., 22 (2008), 650-665.
doi: 10.1137/060677768.![]() ![]() ![]() |
[3] |
P. Charpin, E. Pasalic and C. Tavernier, On bent and semi-bent quadratic boolean functions, IEEE Trans. Inf. Theory, 51 (2005), 4286-4298.
doi: 10.1109/TIT.2005.858929.![]() ![]() ![]() |
[4] |
J. F. Dillon, Elementary Hadamard difference sets, Thesis (Ph.D.)-University of Maryland, College Park, (1974), 126 pp.
![]() ![]() |
[5] |
H. Dobbertin, G. Leander, A. Canteaut, C. Carlet, P. Felke and P. Gaborit, Construction of bent functions via Niho power functions, J. Comb. Theory Ser. A, 113 (2006), 779-798.
doi: 10.1016/j.jcta.2005.07.009.![]() ![]() ![]() |
[6] |
T. Helleseth and A. Kholosha, On generalized bent functions, Proc. IEEE Inf. Theory Appl. Workshop, (2010), 1–6.
doi: 10.1109/ITA.2010.5454124.![]() ![]() |
[7] |
T. Helleseth and A. Kholosha, Sequences, bent functions and Jacob-sthal sums, Sequences and Their Applications-SETA 2010, Lecture Notes Comput. Sci. Springer, Berlin, 6338 (2010), 416-429.
doi: 10.1007/978-3-642-15874-2_35.![]() ![]() ![]() |
[8] |
T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Trans. Inf. Theory, 52 (2006), 2018-2032.
doi: 10.1109/TIT.2006.872854.![]() ![]() ![]() |
[9] |
W. J. Jia, X. Y. Zeng, T. Helleseth and C. L. Li, A class of binomial bent functions over the finite fields of odd characteristic, IEEE Trans. Inf. Theory, 58 (2012), 6054-6063.
doi: 10.1109/TIT.2012.2199736.![]() ![]() ![]() |
[10] |
P. V. Kumar, R. A. Scholtz and L. R. Welch, Generalized bent functions and their properties, J. Combin. Theory Ser. A, 40 (1985), 90-107.
doi: 10.1016/0097-3165(85)90049-4.![]() ![]() ![]() |
[11] |
N. G. Leander, Monomial bent functions, IEEE Trans. Inf. Theory, 52 (2006), 738-743.
doi: 10.1109/TIT.2005.862121.![]() ![]() ![]() |
[12] |
N. Li, T. Helleseth and X. H. Tang andd A. Kholosha, Several new classes of bent functions from Dillon exponents, IEEE Trans. Inf. Theory, 59 (2013), 1818-1831.
doi: 10.1109/TIT.2012.2229782.![]() ![]() ![]() |
[13] |
R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, 1994.
doi: 10.1017/CBO9781139172769.![]() ![]() ![]() |
[14] |
S. Mesnager, Bent and hyper-bent functions in polynomial form and their link with some exponential sums and Dickson polynomials, IEEE Trans. Inf. Theory, 57 (2011), 5996-6009.
doi: 10.1109/TIT.2011.2124439.![]() ![]() ![]() |
[15] |
S. Mesnager and J.-P. Flori, Hyperbent functions via Dillon-like exponents, IEEE Trans. Inf. Theory, 59 (2013), 3215-3232.
doi: 10.1109/TIT.2013.2238580.![]() ![]() ![]() |
[16] |
C. M. Tang, Y. F. Qi, M. Z. Xu, B. C. Wang and Y. X. Yang, A new class of hyper-bent Boolean functions in binomial forms [Online], Available: https://arXiv.org/abs/1112.0062v2.
![]() |
[17] |
N. Y. Yu and G. Gong, Constructions of quadratic bent functions in polynomial forms, IEEE Trans. Inf. Theory, 52 (2006), 3291-3299.
doi: 10.1109/TIT.2006.876251.![]() ![]() ![]() |
[18] |
D. B. Zheng, L. Yu and L. Hu, On a class of binomial bent functions over the finite fields of odd characteristic, Applicable Algebra in Engineering, Communication and Computing, 24 (2013), 461-475.
doi: 10.1007/s00200-013-0202-3.![]() ![]() ![]() |