-
Previous Article
Golay complementary sets with large zero odd-periodic correlation zones
- AMC Home
- This Issue
-
Next Article
Isogeny formulas for Jacobi intersection and twisted hessian curves
A new class of $ p $-ary regular bent functions
1. | School of Mathematics and Information, China West Normal University, Sichuan Nanchong, 637002, China |
2. | School of Mathematical Sciences, Peking University, Beijing, 100871, China |
3. | School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China |
4. | Center of Applied Mathematics, School of Mathematics, Tianjin University, Tianjin, 300072, China |
$ p $ |
$ f(x) = \sum\limits_{i = 0}^{q-1}(Tr^n_1(a_1x^{(r i+s)(q-1)})+Tr^n_1(a_2x^{(r i+s)(q-1)+\frac{q^2-1}{2}}))+bx^{\frac{q^2-1}{2}}, $ |
$ n = 2m $ |
$ q = p^m $ |
$ p $ |
$ a_1,a_2\in \mathbb{F}_{p^n} $ |
$ b\in \mathbb{F}_p $ |
$ p $ |
$ gcd(s-r,\frac{q+1}{2}) = 1 $ |
$ gcd(r,q+1) = 1 $ |
$ 2 $ |
References:
[1] |
A. Canteaut, P. Charpin and G. M. Kyureghyan,
A new class of monomial bent functions, Finite Fields Appl., 14 (2008), 221-241.
doi: 10.1016/j.ffa.2007.02.004. |
[2] |
P. Charpin and G. M. Kyureghyan,
Cubic monomial bent functions: A subclass of $\mathcal{M}$, SIAM J. Discr. Math., 22 (2008), 650-665.
doi: 10.1137/060677768. |
[3] |
P. Charpin, E. Pasalic and C. Tavernier,
On bent and semi-bent quadratic boolean functions, IEEE Trans. Inf. Theory, 51 (2005), 4286-4298.
doi: 10.1109/TIT.2005.858929. |
[4] |
J. F. Dillon, Elementary Hadamard difference sets, Thesis (Ph.D.)-University of Maryland, College Park, (1974), 126 pp. |
[5] |
H. Dobbertin, G. Leander, A. Canteaut, C. Carlet, P. Felke and P. Gaborit,
Construction of bent functions via Niho power functions, J. Comb. Theory Ser. A, 113 (2006), 779-798.
doi: 10.1016/j.jcta.2005.07.009. |
[6] |
T. Helleseth and A. Kholosha, On generalized bent functions, Proc. IEEE Inf. Theory Appl. Workshop, (2010), 1–6.
doi: 10.1109/ITA.2010.5454124. |
[7] |
T. Helleseth and A. Kholosha,
Sequences, bent functions and Jacob-sthal sums, Sequences and Their Applications-SETA 2010, Lecture Notes Comput. Sci. Springer, Berlin, 6338 (2010), 416-429.
doi: 10.1007/978-3-642-15874-2_35. |
[8] |
T. Helleseth and A. Kholosha,
Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Trans. Inf. Theory, 52 (2006), 2018-2032.
doi: 10.1109/TIT.2006.872854. |
[9] |
W. J. Jia, X. Y. Zeng, T. Helleseth and C. L. Li,
A class of binomial bent functions over the finite fields of odd characteristic, IEEE Trans. Inf. Theory, 58 (2012), 6054-6063.
doi: 10.1109/TIT.2012.2199736. |
[10] |
P. V. Kumar, R. A. Scholtz and L. R. Welch,
Generalized bent functions and their properties, J. Combin. Theory Ser. A, 40 (1985), 90-107.
doi: 10.1016/0097-3165(85)90049-4. |
[11] |
N. G. Leander,
Monomial bent functions, IEEE Trans. Inf. Theory, 52 (2006), 738-743.
doi: 10.1109/TIT.2005.862121. |
[12] |
N. Li, T. Helleseth and X. H. Tang andd A. Kholosha,
Several new classes of bent functions from Dillon exponents, IEEE Trans. Inf. Theory, 59 (2013), 1818-1831.
doi: 10.1109/TIT.2012.2229782. |
[13] |
R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, 1994.
doi: 10.1017/CBO9781139172769.![]() ![]() |
[14] |
S. Mesnager,
Bent and hyper-bent functions in polynomial form and their link with some exponential sums and Dickson polynomials, IEEE Trans. Inf. Theory, 57 (2011), 5996-6009.
doi: 10.1109/TIT.2011.2124439. |
[15] |
S. Mesnager and J.-P. Flori,
Hyperbent functions via Dillon-like exponents, IEEE Trans. Inf. Theory, 59 (2013), 3215-3232.
doi: 10.1109/TIT.2013.2238580. |
[16] |
C. M. Tang, Y. F. Qi, M. Z. Xu, B. C. Wang and Y. X. Yang, A new class of hyper-bent Boolean functions in binomial forms [Online], Available: https://arXiv.org/abs/1112.0062v2. Google Scholar |
[17] |
N. Y. Yu and G. Gong,
Constructions of quadratic bent functions in polynomial forms, IEEE Trans. Inf. Theory, 52 (2006), 3291-3299.
doi: 10.1109/TIT.2006.876251. |
[18] |
D. B. Zheng, L. Yu and L. Hu,
On a class of binomial bent functions over the finite fields of odd characteristic, Applicable Algebra in Engineering, Communication and Computing, 24 (2013), 461-475.
doi: 10.1007/s00200-013-0202-3. |
show all references
References:
[1] |
A. Canteaut, P. Charpin and G. M. Kyureghyan,
A new class of monomial bent functions, Finite Fields Appl., 14 (2008), 221-241.
doi: 10.1016/j.ffa.2007.02.004. |
[2] |
P. Charpin and G. M. Kyureghyan,
Cubic monomial bent functions: A subclass of $\mathcal{M}$, SIAM J. Discr. Math., 22 (2008), 650-665.
doi: 10.1137/060677768. |
[3] |
P. Charpin, E. Pasalic and C. Tavernier,
On bent and semi-bent quadratic boolean functions, IEEE Trans. Inf. Theory, 51 (2005), 4286-4298.
doi: 10.1109/TIT.2005.858929. |
[4] |
J. F. Dillon, Elementary Hadamard difference sets, Thesis (Ph.D.)-University of Maryland, College Park, (1974), 126 pp. |
[5] |
H. Dobbertin, G. Leander, A. Canteaut, C. Carlet, P. Felke and P. Gaborit,
Construction of bent functions via Niho power functions, J. Comb. Theory Ser. A, 113 (2006), 779-798.
doi: 10.1016/j.jcta.2005.07.009. |
[6] |
T. Helleseth and A. Kholosha, On generalized bent functions, Proc. IEEE Inf. Theory Appl. Workshop, (2010), 1–6.
doi: 10.1109/ITA.2010.5454124. |
[7] |
T. Helleseth and A. Kholosha,
Sequences, bent functions and Jacob-sthal sums, Sequences and Their Applications-SETA 2010, Lecture Notes Comput. Sci. Springer, Berlin, 6338 (2010), 416-429.
doi: 10.1007/978-3-642-15874-2_35. |
[8] |
T. Helleseth and A. Kholosha,
Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Trans. Inf. Theory, 52 (2006), 2018-2032.
doi: 10.1109/TIT.2006.872854. |
[9] |
W. J. Jia, X. Y. Zeng, T. Helleseth and C. L. Li,
A class of binomial bent functions over the finite fields of odd characteristic, IEEE Trans. Inf. Theory, 58 (2012), 6054-6063.
doi: 10.1109/TIT.2012.2199736. |
[10] |
P. V. Kumar, R. A. Scholtz and L. R. Welch,
Generalized bent functions and their properties, J. Combin. Theory Ser. A, 40 (1985), 90-107.
doi: 10.1016/0097-3165(85)90049-4. |
[11] |
N. G. Leander,
Monomial bent functions, IEEE Trans. Inf. Theory, 52 (2006), 738-743.
doi: 10.1109/TIT.2005.862121. |
[12] |
N. Li, T. Helleseth and X. H. Tang andd A. Kholosha,
Several new classes of bent functions from Dillon exponents, IEEE Trans. Inf. Theory, 59 (2013), 1818-1831.
doi: 10.1109/TIT.2012.2229782. |
[13] |
R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, 1994.
doi: 10.1017/CBO9781139172769.![]() ![]() |
[14] |
S. Mesnager,
Bent and hyper-bent functions in polynomial form and their link with some exponential sums and Dickson polynomials, IEEE Trans. Inf. Theory, 57 (2011), 5996-6009.
doi: 10.1109/TIT.2011.2124439. |
[15] |
S. Mesnager and J.-P. Flori,
Hyperbent functions via Dillon-like exponents, IEEE Trans. Inf. Theory, 59 (2013), 3215-3232.
doi: 10.1109/TIT.2013.2238580. |
[16] |
C. M. Tang, Y. F. Qi, M. Z. Xu, B. C. Wang and Y. X. Yang, A new class of hyper-bent Boolean functions in binomial forms [Online], Available: https://arXiv.org/abs/1112.0062v2. Google Scholar |
[17] |
N. Y. Yu and G. Gong,
Constructions of quadratic bent functions in polynomial forms, IEEE Trans. Inf. Theory, 52 (2006), 3291-3299.
doi: 10.1109/TIT.2006.876251. |
[18] |
D. B. Zheng, L. Yu and L. Hu,
On a class of binomial bent functions over the finite fields of odd characteristic, Applicable Algebra in Engineering, Communication and Computing, 24 (2013), 461-475.
doi: 10.1007/s00200-013-0202-3. |
[1] |
Yanfeng Qi, Chunming Tang, Zhengchun Zhou, Cuiling Fan. Several infinite families of p-ary weakly regular bent functions. Advances in Mathematics of Communications, 2018, 12 (2) : 303-315. doi: 10.3934/amc.2018019 |
[2] |
Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008 |
[3] |
Ayça Çeşmelioğlu, Wilfried Meidl. Bent and vectorial bent functions, partial difference sets, and strongly regular graphs. Advances in Mathematics of Communications, 2018, 12 (4) : 691-705. doi: 10.3934/amc.2018041 |
[4] |
Ayça Çeşmelioǧlu, Wilfried Meidl, Alexander Pott. On the dual of (non)-weakly regular bent functions and self-dual bent functions. Advances in Mathematics of Communications, 2013, 7 (4) : 425-440. doi: 10.3934/amc.2013.7.425 |
[5] |
Jacques Wolfmann. Special bent and near-bent functions. Advances in Mathematics of Communications, 2014, 8 (1) : 21-33. doi: 10.3934/amc.2014.8.21 |
[6] |
Claude Carlet, Fengrong Zhang, Yupu Hu. Secondary constructions of bent functions and their enforcement. Advances in Mathematics of Communications, 2012, 6 (3) : 305-314. doi: 10.3934/amc.2012.6.305 |
[7] |
Sihem Mesnager, Fengrong Zhang, Yong Zhou. On construction of bent functions involving symmetric functions and their duals. Advances in Mathematics of Communications, 2017, 11 (2) : 347-352. doi: 10.3934/amc.2017027 |
[8] |
Sihem Mesnager, Fengrong Zhang. On constructions of bent, semi-bent and five valued spectrum functions from old bent functions. Advances in Mathematics of Communications, 2017, 11 (2) : 339-345. doi: 10.3934/amc.2017026 |
[9] |
Samir Hodžić, Enes Pasalic. Generalized bent functions -sufficient conditions and related constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 549-566. doi: 10.3934/amc.2017043 |
[10] |
Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249 |
[11] |
Jyrki Lahtonen, Gary McGuire, Harold N. Ward. Gold and Kasami-Welch functions, quadratic forms, and bent functions. Advances in Mathematics of Communications, 2007, 1 (2) : 243-250. doi: 10.3934/amc.2007.1.243 |
[12] |
Kanat Abdukhalikov, Sihem Mesnager. Explicit constructions of bent functions from pseudo-planar functions. Advances in Mathematics of Communications, 2017, 11 (2) : 293-299. doi: 10.3934/amc.2017021 |
[13] |
Joan-Josep Climent, Francisco J. García, Verónica Requena. On the construction of bent functions of $n+2$ variables from bent functions of $n$ variables. Advances in Mathematics of Communications, 2008, 2 (4) : 421-431. doi: 10.3934/amc.2008.2.421 |
[14] |
Xiwang Cao, Hao Chen, Sihem Mesnager. Further results on semi-bent functions in polynomial form. Advances in Mathematics of Communications, 2016, 10 (4) : 725-741. doi: 10.3934/amc.2016037 |
[15] |
Natalia Tokareva. On the number of bent functions from iterative constructions: lower bounds and hypotheses. Advances in Mathematics of Communications, 2011, 5 (4) : 609-621. doi: 10.3934/amc.2011.5.609 |
[16] |
Sihong Su. A new construction of rotation symmetric bent functions with maximal algebraic degree. Advances in Mathematics of Communications, 2019, 13 (2) : 253-265. doi: 10.3934/amc.2019017 |
[17] |
Wenying Zhang, Zhaohui Xing, Keqin Feng. A construction of bent functions with optimal algebraic degree and large symmetric group. Advances in Mathematics of Communications, 2020, 14 (1) : 23-33. doi: 10.3934/amc.2020003 |
[18] |
Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017 |
[19] |
Raf Cluckers, Julia Gordon, Immanuel Halupczok. Motivic functions, integrability, and applications to harmonic analysis on $p$-adic groups. Electronic Research Announcements, 2014, 21: 137-152. doi: 10.3934/era.2014.21.137 |
[20] |
Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779 |
2018 Impact Factor: 0.879
Tools
Article outline
[Back to Top]