-
Previous Article
Complete weight enumerators of a class of linear codes over finite fields
- AMC Home
- This Issue
-
Next Article
The singularity attack to the multivariate signature scheme HIMQ-3
A class of linear codes and their complete weight enumerators
1. | Department of Math, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu Province 211100, China |
2. | State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China |
$ {\mathbb F}_q $ |
$ q = p^m $ |
$ p $ |
$ m $ |
$ \operatorname{Tr}_m $ |
$ {\mathbb F}_q $ |
$ {\mathbb F}_p $ |
$ D\subset {\mathbb F}_q^t $ |
$ t $ |
$ D = \{(x_1, x_2, \cdots, x_t)\in {\mathbb F}_q^t:\operatorname{Tr}_m(x_1^2+x_2^2+\cdots+x_t^2) = 0, \operatorname{Tr}_m(x_1+x_2+\cdots+x_t) = 1\} $ |
$ p $ |
$ {\mathcal C}_D $ |
$ \begin{eqnarray*} {\mathcal C}_D = \{\textbf{c}(a_1, a_2, \cdots, a_t): (a_1, a_2, \cdots, a_t)\in {\mathbb F}_q^t\}, \end{eqnarray*} $ |
$ \textbf{c}(a_1, a_2, \cdots, a_t) = (\operatorname{Tr}_m(a_1x_1+a_1x_2\cdots+a_tx_t))_{(x_1, \cdots, x_t)\in D}. $ |
$ {\mathcal C}_D $ |
References:
[1] |
J. Ahn, D. Ka and C. J. Li,
Complete weight enumerators of a class of linear codes, Des. Codes Cryptogr., 83 (2017), 83-99.
doi: 10.1007/s10623-016-0205-8. |
[2] |
I. F. Blake and K. Kith,
On the complete weight enumerator of Reed-Solomon codes, SIAM J. Discret. Math., 4 (1991), 164-171.
doi: 10.1137/0404016. |
[3] |
C. S. Ding, J. Q. Luo and H. Niederreiter,
Two-weight codes punctured from irreducible cyclic codes, Coding and Cryptology, Ser. Coding Theory Cryptol., World Sci. Publ., Hackensack, NJ, 4 (2008), 119-124.
doi: 10.1142/9789812832245_0009. |
[4] |
C. S. Ding,
Optimal constant composition codes from zero-difference balanced functions, IEEE Trans. Inf. Theory, 54 (2008), 5766-5770.
doi: 10.1109/TIT.2008.2006420. |
[5] |
C. S. Ding and J. X. Yin,
A construction of optimal constant composition codes, Des. Codes Cryptogr., 40 (2006), 157-165.
doi: 10.1007/s10623-006-0004-8. |
[6] |
C. S. Ding, T. Helleseth, T. Klove and X. S. Wang,
A generic construction of Cartesian authentication codes, IEEE Trans. Inf. Theory, 53 (2007), 2229-2235.
doi: 10.1109/TIT.2007.896872. |
[7] |
C. S. Ding and X. S. Wang,
A coding theory construction of new systematic authentication codes, Theory Comput. Sci., 330 (2005), 81-99.
doi: 10.1016/j.tcs.2004.09.011. |
[8] |
K. L. Ding and C. S. Ding,
A class of two-weight and three weight codes and their applications in secret sharing, IEEE Trans. Inf. Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861. |
[9] |
T. Helleseth and A. Kholosha,
Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Trans. Inf. Theory, 52 (2006), 2018-2032.
doi: 10.1109/TIT.2006.872854. |
[10] |
K. Kith, Complete Weight Enumeration of Reed-Solomon Codes, Master's Thesis, Department of Electrical and Computing Engineering, University of Waterloo, Waterloo, Ontario, Canada, 1989. Google Scholar |
[11] |
A. Kuzmin and A. Nechaev,
Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring, Discret. Appl. Math., 111 (2001), 117-137.
doi: 10.1016/S0166-218X(00)00348-6. |
[12] |
C. J. Li, S. H. Bae and S. D. Yang,
Some two-weight and three-weight linear codes, Advances in Mathematics of Communications, 13 (2019), 195-211.
doi: 10.3934/amc.2019013. |
[13] |
C. J. Li, Q. Yue and F. W. Fu,
Complete weight enumerators of some cyclic codes, Des. Codes Cryptogr., 80 (2016), 295-315.
doi: 10.1007/s10623-015-0091-5. |
[14] |
C. J. Li and Q. Yue,
Weight distributions of two classes of cyclic codes with respect to two distinct order elements, IEEE Trans. Inf. Theory, 60 (2014), 296-303.
doi: 10.1109/TIT.2013.2287211. |
[15] |
C. J. Li, S. Bae, J. Ahn, S. D. Yang and Z.-A. Yao,
Complete weight enumerators of some linear codes and their applications, Des. Codes Cryptogr., 81 (2016), 153-168.
doi: 10.1007/s10623-015-0136-9. |
[16] |
F. Li and Q. Y. Wang,
A class of three-weight and five weight linear codes, Discrete Appl. Math., 241 (2018), 25-38.
doi: 10.1016/j.dam.2016.11.005. |
[17] |
R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.
![]() |
[18] |
G. J. Luo, X. W. Cao, S. D. Xu and J. F. Mi,
Binary linear codes with two or three weights from niho exponents, Cryptogr. Commun., 10 (2018), 301-318.
doi: 10.1007/s12095-017-0220-2. |
[19] |
G. J. Luo and X. W. Cao,
Complete weight enumerators of three classes of linear codes, Cryptogr. Commun., 10 (2018), 1091-1108.
doi: 10.1007/s12095-017-0270-5. |
[20] |
M. J. Shi, Y. Guan and P. Solé,
Two new families of two-weight codes, IEEE Trans. Inf. Theory, 63 (2017), 6240-6246.
doi: 10.1109/TIT.2017.2742499. |
[21] |
M. J. Shi, Y. Liu and P. Solé,
Optimal two weight codes from trace codes over a non-chain ring, Discrete Appl. Math., 219 (2017), 176-181.
doi: 10.1016/j.dam.2016.09.050. |
[22] |
M. J. Shi, R. S. Wu, Y. Liu and P. Solé,
Two and three weight codes over $ \mathbb{F}_p+u \mathbb{F}_p$, Cryptogr. Commun., 9 (2017), 637-646.
doi: 10.1007/s12095-016-0206-5. |
[23] |
T. Storer, Cyclotomy and Difference Sets, Lectures in Advanced Mathematics, No. 2 Markham Publishing Co., Chicago, III. 1967. |
[24] |
S. D. Yang, X. L. Kong and C. M. Tang,
A construction of linear codes and their complete weight enumerator, Finite Fields Appl., 48 (2017), 196-226.
doi: 10.1016/j.ffa.2017.08.001. |
[25] |
S. D. Yang, Z.-A. Yao and C.-A. Zhao,
The weight distributions of two classes of $p$-ary cyclic codes with few weights, Finite Field Appl., 44 (2017), 76-91.
doi: 10.1016/j.ffa.2016.11.004. |
[26] |
S. D. Yang and Z.-A. Yao,
Complete weight enumerators of a class of linear codes, Discrete Math., 340 (2017), 729-739.
doi: 10.1016/j.disc.2016.11.029. |
[27] |
Z. C. Zhou, N. Li, C. L. Fan and T. Helleseth,
Linear codes with two or three weights from quadratic Bent functions, Des. Codes Cryptogr., 81 (2016), 283-295.
doi: 10.1007/s10623-015-0144-9. |
[28] |
Z. C. Zhou and C. S. Ding,
A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.
doi: 10.1016/j.ffa.2013.08.005. |
show all references
References:
[1] |
J. Ahn, D. Ka and C. J. Li,
Complete weight enumerators of a class of linear codes, Des. Codes Cryptogr., 83 (2017), 83-99.
doi: 10.1007/s10623-016-0205-8. |
[2] |
I. F. Blake and K. Kith,
On the complete weight enumerator of Reed-Solomon codes, SIAM J. Discret. Math., 4 (1991), 164-171.
doi: 10.1137/0404016. |
[3] |
C. S. Ding, J. Q. Luo and H. Niederreiter,
Two-weight codes punctured from irreducible cyclic codes, Coding and Cryptology, Ser. Coding Theory Cryptol., World Sci. Publ., Hackensack, NJ, 4 (2008), 119-124.
doi: 10.1142/9789812832245_0009. |
[4] |
C. S. Ding,
Optimal constant composition codes from zero-difference balanced functions, IEEE Trans. Inf. Theory, 54 (2008), 5766-5770.
doi: 10.1109/TIT.2008.2006420. |
[5] |
C. S. Ding and J. X. Yin,
A construction of optimal constant composition codes, Des. Codes Cryptogr., 40 (2006), 157-165.
doi: 10.1007/s10623-006-0004-8. |
[6] |
C. S. Ding, T. Helleseth, T. Klove and X. S. Wang,
A generic construction of Cartesian authentication codes, IEEE Trans. Inf. Theory, 53 (2007), 2229-2235.
doi: 10.1109/TIT.2007.896872. |
[7] |
C. S. Ding and X. S. Wang,
A coding theory construction of new systematic authentication codes, Theory Comput. Sci., 330 (2005), 81-99.
doi: 10.1016/j.tcs.2004.09.011. |
[8] |
K. L. Ding and C. S. Ding,
A class of two-weight and three weight codes and their applications in secret sharing, IEEE Trans. Inf. Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861. |
[9] |
T. Helleseth and A. Kholosha,
Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Trans. Inf. Theory, 52 (2006), 2018-2032.
doi: 10.1109/TIT.2006.872854. |
[10] |
K. Kith, Complete Weight Enumeration of Reed-Solomon Codes, Master's Thesis, Department of Electrical and Computing Engineering, University of Waterloo, Waterloo, Ontario, Canada, 1989. Google Scholar |
[11] |
A. Kuzmin and A. Nechaev,
Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring, Discret. Appl. Math., 111 (2001), 117-137.
doi: 10.1016/S0166-218X(00)00348-6. |
[12] |
C. J. Li, S. H. Bae and S. D. Yang,
Some two-weight and three-weight linear codes, Advances in Mathematics of Communications, 13 (2019), 195-211.
doi: 10.3934/amc.2019013. |
[13] |
C. J. Li, Q. Yue and F. W. Fu,
Complete weight enumerators of some cyclic codes, Des. Codes Cryptogr., 80 (2016), 295-315.
doi: 10.1007/s10623-015-0091-5. |
[14] |
C. J. Li and Q. Yue,
Weight distributions of two classes of cyclic codes with respect to two distinct order elements, IEEE Trans. Inf. Theory, 60 (2014), 296-303.
doi: 10.1109/TIT.2013.2287211. |
[15] |
C. J. Li, S. Bae, J. Ahn, S. D. Yang and Z.-A. Yao,
Complete weight enumerators of some linear codes and their applications, Des. Codes Cryptogr., 81 (2016), 153-168.
doi: 10.1007/s10623-015-0136-9. |
[16] |
F. Li and Q. Y. Wang,
A class of three-weight and five weight linear codes, Discrete Appl. Math., 241 (2018), 25-38.
doi: 10.1016/j.dam.2016.11.005. |
[17] |
R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.
![]() |
[18] |
G. J. Luo, X. W. Cao, S. D. Xu and J. F. Mi,
Binary linear codes with two or three weights from niho exponents, Cryptogr. Commun., 10 (2018), 301-318.
doi: 10.1007/s12095-017-0220-2. |
[19] |
G. J. Luo and X. W. Cao,
Complete weight enumerators of three classes of linear codes, Cryptogr. Commun., 10 (2018), 1091-1108.
doi: 10.1007/s12095-017-0270-5. |
[20] |
M. J. Shi, Y. Guan and P. Solé,
Two new families of two-weight codes, IEEE Trans. Inf. Theory, 63 (2017), 6240-6246.
doi: 10.1109/TIT.2017.2742499. |
[21] |
M. J. Shi, Y. Liu and P. Solé,
Optimal two weight codes from trace codes over a non-chain ring, Discrete Appl. Math., 219 (2017), 176-181.
doi: 10.1016/j.dam.2016.09.050. |
[22] |
M. J. Shi, R. S. Wu, Y. Liu and P. Solé,
Two and three weight codes over $ \mathbb{F}_p+u \mathbb{F}_p$, Cryptogr. Commun., 9 (2017), 637-646.
doi: 10.1007/s12095-016-0206-5. |
[23] |
T. Storer, Cyclotomy and Difference Sets, Lectures in Advanced Mathematics, No. 2 Markham Publishing Co., Chicago, III. 1967. |
[24] |
S. D. Yang, X. L. Kong and C. M. Tang,
A construction of linear codes and their complete weight enumerator, Finite Fields Appl., 48 (2017), 196-226.
doi: 10.1016/j.ffa.2017.08.001. |
[25] |
S. D. Yang, Z.-A. Yao and C.-A. Zhao,
The weight distributions of two classes of $p$-ary cyclic codes with few weights, Finite Field Appl., 44 (2017), 76-91.
doi: 10.1016/j.ffa.2016.11.004. |
[26] |
S. D. Yang and Z.-A. Yao,
Complete weight enumerators of a class of linear codes, Discrete Math., 340 (2017), 729-739.
doi: 10.1016/j.disc.2016.11.029. |
[27] |
Z. C. Zhou, N. Li, C. L. Fan and T. Helleseth,
Linear codes with two or three weights from quadratic Bent functions, Des. Codes Cryptogr., 81 (2016), 283-295.
doi: 10.1007/s10623-015-0144-9. |
[28] |
Z. C. Zhou and C. S. Ding,
A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.
doi: 10.1016/j.ffa.2013.08.005. |
Weight | Frequency |
0 | 1 |
|
|
|
|
|
|
|
Weight | Frequency |
0 | 1 |
|
|
|
|
|
|
|
Weight | Frequency |
0 | 1 |
|
|
|
|
|
|
|
|
|
|
|
Weight | Frequency |
0 | 1 |
|
|
|
|
|
|
|
|
|
|
|
Weight | Frequency |
0 | 1 |
|
|
|
|
|
|
|
Weight | Frequency |
0 | 1 |
|
|
|
|
|
|
|
Weight | Frequency |
0 | 1 |
|
|
|
|
|
|
|
|
|
Weight | Frequency |
0 | 1 |
|
|
|
|
|
|
|
|
|
[1] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011 |
[2] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[3] |
Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074 |
[4] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[5] |
Hyunjin Ahn, Seung-Yeal Ha, Woojoo Shim. Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds. Kinetic & Related Models, 2021, 14 (2) : 323-351. doi: 10.3934/krm.2021007 |
[6] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[7] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[8] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[9] |
Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021025 |
[10] |
Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021058 |
[11] |
Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021044 |
[12] |
Chloé Jimenez. A zero sum differential game with correlated informations on the initial position. A case with a continuum of initial positions. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021009 |
[13] |
Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (I): The sum of indices of equilibria is $ -1 $. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021096 |
[14] |
Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021101 |
[15] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[16] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[17] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[18] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[19] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[20] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]