# American Institute of Mathematical Sciences

doi: 10.3934/amc.2020044

## A class of linear codes and their complete weight enumerators

 1 Department of Math, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu Province 211100, China 2 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

* Corresponding author: Xiwang Cao

Received  April 2019 Revised  June 2019 Published  November 2019

Fund Project: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11771007 and 61572027).

Let
 ${\mathbb F}_q$
be the finite field with
 $q = p^m$
elements, where
 $p$
is an odd prime and
 $m$
is a positive integer. Let
 $\operatorname{Tr}_m$
denote the trace function from
 ${\mathbb F}_q$
onto
 ${\mathbb F}_p$
, and the defining set
 $D\subset {\mathbb F}_q^t$
, where
 $t$
is a positive integer. In this paper, the set
 $D = \{(x_1, x_2, \cdots, x_t)\in {\mathbb F}_q^t:\operatorname{Tr}_m(x_1^2+x_2^2+\cdots+x_t^2) = 0, \operatorname{Tr}_m(x_1+x_2+\cdots+x_t) = 1\}$
. Define the
 $p$
-ary linear code
 ${\mathcal C}_D$
by
 $\begin{eqnarray*} {\mathcal C}_D = \{\textbf{c}(a_1, a_2, \cdots, a_t): (a_1, a_2, \cdots, a_t)\in {\mathbb F}_q^t\}, \end{eqnarray*}$
where
 $\textbf{c}(a_1, a_2, \cdots, a_t) = (\operatorname{Tr}_m(a_1x_1+a_1x_2\cdots+a_tx_t))_{(x_1, \cdots, x_t)\in D}.$
We evaluate the complete weight enumerator of the linear codes
 ${\mathcal C}_D$
, and present its weight distributions. Some examples are given to illustrate the results.
Citation: Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, doi: 10.3934/amc.2020044
##### References:
 [1] J. Ahn, D. Ka and C. J. Li, Complete weight enumerators of a class of linear codes, Des. Codes Cryptogr., 83 (2017), 83-99.  doi: 10.1007/s10623-016-0205-8.  Google Scholar [2] I. F. Blake and K. Kith, On the complete weight enumerator of Reed-Solomon codes, SIAM J. Discret. Math., 4 (1991), 164-171.  doi: 10.1137/0404016.  Google Scholar [3] C. S. Ding, J. Q. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, Coding and Cryptology, Ser. Coding Theory Cryptol., World Sci. Publ., Hackensack, NJ, 4 (2008), 119-124.  doi: 10.1142/9789812832245_0009.  Google Scholar [4] C. S. Ding, Optimal constant composition codes from zero-difference balanced functions, IEEE Trans. Inf. Theory, 54 (2008), 5766-5770.  doi: 10.1109/TIT.2008.2006420.  Google Scholar [5] C. S. Ding and J. X. Yin, A construction of optimal constant composition codes, Des. Codes Cryptogr., 40 (2006), 157-165.  doi: 10.1007/s10623-006-0004-8.  Google Scholar [6] C. S. Ding, T. Helleseth, T. Klove and X. S. Wang, A generic construction of Cartesian authentication codes, IEEE Trans. Inf. Theory, 53 (2007), 2229-2235.  doi: 10.1109/TIT.2007.896872.  Google Scholar [7] C. S. Ding and X. S. Wang, A coding theory construction of new systematic authentication codes, Theory Comput. Sci., 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.  Google Scholar [8] K. L. Ding and C. S. Ding, A class of two-weight and three weight codes and their applications in secret sharing, IEEE Trans. Inf. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar [9] T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Trans. Inf. Theory, 52 (2006), 2018-2032.  doi: 10.1109/TIT.2006.872854.  Google Scholar [10] K. Kith, Complete Weight Enumeration of Reed-Solomon Codes, Master's Thesis, Department of Electrical and Computing Engineering, University of Waterloo, Waterloo, Ontario, Canada, 1989. Google Scholar [11] A. Kuzmin and A. Nechaev, Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring, Discret. Appl. Math., 111 (2001), 117-137.  doi: 10.1016/S0166-218X(00)00348-6.  Google Scholar [12] C. J. Li, S. H. Bae and S. D. Yang, Some two-weight and three-weight linear codes, Advances in Mathematics of Communications, 13 (2019), 195-211.  doi: 10.3934/amc.2019013.  Google Scholar [13] C. J. Li, Q. Yue and F. W. Fu, Complete weight enumerators of some cyclic codes, Des. Codes Cryptogr., 80 (2016), 295-315.  doi: 10.1007/s10623-015-0091-5.  Google Scholar [14] C. J. Li and Q. Yue, Weight distributions of two classes of cyclic codes with respect to two distinct order elements, IEEE Trans. Inf. Theory, 60 (2014), 296-303.  doi: 10.1109/TIT.2013.2287211.  Google Scholar [15] C. J. Li, S. Bae, J. Ahn, S. D. Yang and Z.-A. Yao, Complete weight enumerators of some linear codes and their applications, Des. Codes Cryptogr., 81 (2016), 153-168.  doi: 10.1007/s10623-015-0136-9.  Google Scholar [16] F. Li and Q. Y. Wang, A class of three-weight and five weight linear codes, Discrete Appl. Math., 241 (2018), 25-38.  doi: 10.1016/j.dam.2016.11.005.  Google Scholar [17] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.   Google Scholar [18] G. J. Luo, X. W. Cao, S. D. Xu and J. F. Mi, Binary linear codes with two or three weights from niho exponents, Cryptogr. Commun., 10 (2018), 301-318.  doi: 10.1007/s12095-017-0220-2.  Google Scholar [19] G. J. Luo and X. W. Cao, Complete weight enumerators of three classes of linear codes, Cryptogr. Commun., 10 (2018), 1091-1108.  doi: 10.1007/s12095-017-0270-5.  Google Scholar [20] M. J. Shi, Y. Guan and P. Solé, Two new families of two-weight codes, IEEE Trans. Inf. Theory, 63 (2017), 6240-6246.  doi: 10.1109/TIT.2017.2742499.  Google Scholar [21] M. J. Shi, Y. Liu and P. Solé, Optimal two weight codes from trace codes over a non-chain ring, Discrete Appl. Math., 219 (2017), 176-181.  doi: 10.1016/j.dam.2016.09.050.  Google Scholar [22] M. J. Shi, R. S. Wu, Y. Liu and P. Solé, Two and three weight codes over $\mathbb{F}_p+u \mathbb{F}_p$, Cryptogr. Commun., 9 (2017), 637-646.  doi: 10.1007/s12095-016-0206-5.  Google Scholar [23] T. Storer, Cyclotomy and Difference Sets, Lectures in Advanced Mathematics, No. 2 Markham Publishing Co., Chicago, III. 1967.  Google Scholar [24] S. D. Yang, X. L. Kong and C. M. Tang, A construction of linear codes and their complete weight enumerator, Finite Fields Appl., 48 (2017), 196-226.  doi: 10.1016/j.ffa.2017.08.001.  Google Scholar [25] S. D. Yang, Z.-A. Yao and C.-A. Zhao, The weight distributions of two classes of $p$-ary cyclic codes with few weights, Finite Field Appl., 44 (2017), 76-91.  doi: 10.1016/j.ffa.2016.11.004.  Google Scholar [26] S. D. Yang and Z.-A. Yao, Complete weight enumerators of a class of linear codes, Discrete Math., 340 (2017), 729-739.  doi: 10.1016/j.disc.2016.11.029.  Google Scholar [27] Z. C. Zhou, N. Li, C. L. Fan and T. Helleseth, Linear codes with two or three weights from quadratic Bent functions, Des. Codes Cryptogr., 81 (2016), 283-295.  doi: 10.1007/s10623-015-0144-9.  Google Scholar [28] Z. C. Zhou and C. S. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.  doi: 10.1016/j.ffa.2013.08.005.  Google Scholar

show all references

##### References:
 [1] J. Ahn, D. Ka and C. J. Li, Complete weight enumerators of a class of linear codes, Des. Codes Cryptogr., 83 (2017), 83-99.  doi: 10.1007/s10623-016-0205-8.  Google Scholar [2] I. F. Blake and K. Kith, On the complete weight enumerator of Reed-Solomon codes, SIAM J. Discret. Math., 4 (1991), 164-171.  doi: 10.1137/0404016.  Google Scholar [3] C. S. Ding, J. Q. Luo and H. Niederreiter, Two-weight codes punctured from irreducible cyclic codes, Coding and Cryptology, Ser. Coding Theory Cryptol., World Sci. Publ., Hackensack, NJ, 4 (2008), 119-124.  doi: 10.1142/9789812832245_0009.  Google Scholar [4] C. S. Ding, Optimal constant composition codes from zero-difference balanced functions, IEEE Trans. Inf. Theory, 54 (2008), 5766-5770.  doi: 10.1109/TIT.2008.2006420.  Google Scholar [5] C. S. Ding and J. X. Yin, A construction of optimal constant composition codes, Des. Codes Cryptogr., 40 (2006), 157-165.  doi: 10.1007/s10623-006-0004-8.  Google Scholar [6] C. S. Ding, T. Helleseth, T. Klove and X. S. Wang, A generic construction of Cartesian authentication codes, IEEE Trans. Inf. Theory, 53 (2007), 2229-2235.  doi: 10.1109/TIT.2007.896872.  Google Scholar [7] C. S. Ding and X. S. Wang, A coding theory construction of new systematic authentication codes, Theory Comput. Sci., 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.  Google Scholar [8] K. L. Ding and C. S. Ding, A class of two-weight and three weight codes and their applications in secret sharing, IEEE Trans. Inf. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar [9] T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Trans. Inf. Theory, 52 (2006), 2018-2032.  doi: 10.1109/TIT.2006.872854.  Google Scholar [10] K. Kith, Complete Weight Enumeration of Reed-Solomon Codes, Master's Thesis, Department of Electrical and Computing Engineering, University of Waterloo, Waterloo, Ontario, Canada, 1989. Google Scholar [11] A. Kuzmin and A. Nechaev, Complete weight enumerators of generalized Kerdock code and related linear codes over Galois ring, Discret. Appl. Math., 111 (2001), 117-137.  doi: 10.1016/S0166-218X(00)00348-6.  Google Scholar [12] C. J. Li, S. H. Bae and S. D. Yang, Some two-weight and three-weight linear codes, Advances in Mathematics of Communications, 13 (2019), 195-211.  doi: 10.3934/amc.2019013.  Google Scholar [13] C. J. Li, Q. Yue and F. W. Fu, Complete weight enumerators of some cyclic codes, Des. Codes Cryptogr., 80 (2016), 295-315.  doi: 10.1007/s10623-015-0091-5.  Google Scholar [14] C. J. Li and Q. Yue, Weight distributions of two classes of cyclic codes with respect to two distinct order elements, IEEE Trans. Inf. Theory, 60 (2014), 296-303.  doi: 10.1109/TIT.2013.2287211.  Google Scholar [15] C. J. Li, S. Bae, J. Ahn, S. D. Yang and Z.-A. Yao, Complete weight enumerators of some linear codes and their applications, Des. Codes Cryptogr., 81 (2016), 153-168.  doi: 10.1007/s10623-015-0136-9.  Google Scholar [16] F. Li and Q. Y. Wang, A class of three-weight and five weight linear codes, Discrete Appl. Math., 241 (2018), 25-38.  doi: 10.1016/j.dam.2016.11.005.  Google Scholar [17] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.   Google Scholar [18] G. J. Luo, X. W. Cao, S. D. Xu and J. F. Mi, Binary linear codes with two or three weights from niho exponents, Cryptogr. Commun., 10 (2018), 301-318.  doi: 10.1007/s12095-017-0220-2.  Google Scholar [19] G. J. Luo and X. W. Cao, Complete weight enumerators of three classes of linear codes, Cryptogr. Commun., 10 (2018), 1091-1108.  doi: 10.1007/s12095-017-0270-5.  Google Scholar [20] M. J. Shi, Y. Guan and P. Solé, Two new families of two-weight codes, IEEE Trans. Inf. Theory, 63 (2017), 6240-6246.  doi: 10.1109/TIT.2017.2742499.  Google Scholar [21] M. J. Shi, Y. Liu and P. Solé, Optimal two weight codes from trace codes over a non-chain ring, Discrete Appl. Math., 219 (2017), 176-181.  doi: 10.1016/j.dam.2016.09.050.  Google Scholar [22] M. J. Shi, R. S. Wu, Y. Liu and P. Solé, Two and three weight codes over $\mathbb{F}_p+u \mathbb{F}_p$, Cryptogr. Commun., 9 (2017), 637-646.  doi: 10.1007/s12095-016-0206-5.  Google Scholar [23] T. Storer, Cyclotomy and Difference Sets, Lectures in Advanced Mathematics, No. 2 Markham Publishing Co., Chicago, III. 1967.  Google Scholar [24] S. D. Yang, X. L. Kong and C. M. Tang, A construction of linear codes and their complete weight enumerator, Finite Fields Appl., 48 (2017), 196-226.  doi: 10.1016/j.ffa.2017.08.001.  Google Scholar [25] S. D. Yang, Z.-A. Yao and C.-A. Zhao, The weight distributions of two classes of $p$-ary cyclic codes with few weights, Finite Field Appl., 44 (2017), 76-91.  doi: 10.1016/j.ffa.2016.11.004.  Google Scholar [26] S. D. Yang and Z.-A. Yao, Complete weight enumerators of a class of linear codes, Discrete Math., 340 (2017), 729-739.  doi: 10.1016/j.disc.2016.11.029.  Google Scholar [27] Z. C. Zhou, N. Li, C. L. Fan and T. Helleseth, Linear codes with two or three weights from quadratic Bent functions, Des. Codes Cryptogr., 81 (2016), 283-295.  doi: 10.1007/s10623-015-0144-9.  Google Scholar [28] Z. C. Zhou and C. S. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.  doi: 10.1016/j.ffa.2013.08.005.  Google Scholar
The weight distribution of $\mathcal{C}_D$ for $2\mid mt, (mt)_p = 0$
 Weight Frequency 0 1 $p^{tm-2}$ $p-1$ $(p-1)p^{tm-3}$ $p^{tm-1}-p$ $(p-1)(p^{tm-3}-p^{-2}G_m^t)$ $(p-1)p^{tm-2}$ $(p-1)p^{tm-3}+p^{-2}G_m^t$ $(p-1)^2p^{tm-2}$
 Weight Frequency 0 1 $p^{tm-2}$ $p-1$ $(p-1)p^{tm-3}$ $p^{tm-1}-p$ $(p-1)(p^{tm-3}-p^{-2}G_m^t)$ $(p-1)p^{tm-2}$ $(p-1)p^{tm-3}+p^{-2}G_m^t$ $(p-1)^2p^{tm-2}$
The weight distribution of $\mathcal{C}_D$ for $2\mid mt, (mt)_p\neq0$
 Weight Frequency 0 1 $p^{tm-2}+p^{-1}G_m^t$ $p-1$ $(p-1)p^{tm-3}$ $p^{tm-2}-p$ $(p-1)p^{tm-3}+p^{-2}G_m^t$ $(p-1)(p^{tm-2}+p^{-1}G_m^t)$ $(p-1)p^{tm-3}+p^{-1}G_m^t$ $(p-1)(p^{tm-2}-1)$ $(p-1)p^{tm-3}+p^{-2}(p+1)G_m^t$ $\frac{1}{2}(p-1)(p-2)(p^{tm-2}+p^{-1}G_m^t)$ $(p-1)(p^{tm-3}+p^{-2}G_m^t)$ $\frac{1}{2}(p-1)(p^{tm-1}-G_m^t)$
 Weight Frequency 0 1 $p^{tm-2}+p^{-1}G_m^t$ $p-1$ $(p-1)p^{tm-3}$ $p^{tm-2}-p$ $(p-1)p^{tm-3}+p^{-2}G_m^t$ $(p-1)(p^{tm-2}+p^{-1}G_m^t)$ $(p-1)p^{tm-3}+p^{-1}G_m^t$ $(p-1)(p^{tm-2}-1)$ $(p-1)p^{tm-3}+p^{-2}(p+1)G_m^t$ $\frac{1}{2}(p-1)(p-2)(p^{tm-2}+p^{-1}G_m^t)$ $(p-1)(p^{tm-3}+p^{-2}G_m^t)$ $\frac{1}{2}(p-1)(p^{tm-1}-G_m^t)$
The weight distribution of $\mathcal{C}_D$ for $2\nmid mt, (mt)_p = 0$
 Weight Frequency 0 1 $p^{tm-2}$ $p-1$ $(p-1)p^{tm-3}$ $2p^{tm-1}-p^{tm-2}-p$ $(p-1)p^{tm-3}+p^{-2}G_m^tG$ $\frac{1}{2}(p-1)^2p^{tm-2}$ $(p-1)p^{tm-3}-p^{-2}G_m^tG$ $\frac{1}{2}(p-1)^2p^{tm-2}$
 Weight Frequency 0 1 $p^{tm-2}$ $p-1$ $(p-1)p^{tm-3}$ $2p^{tm-1}-p^{tm-2}-p$ $(p-1)p^{tm-3}+p^{-2}G_m^tG$ $\frac{1}{2}(p-1)^2p^{tm-2}$ $(p-1)p^{tm-3}-p^{-2}G_m^tG$ $\frac{1}{2}(p-1)^2p^{tm-2}$
The weight distribution of $\mathcal{C}_D$ for $2\nmid mt, (mt)_p\neq0$
 Weight Frequency 0 1 $n$ $p-1$ $(p-1)p^{tm-3}$ $n+p^{-1}\eta(-(mt)_p)G_m^tG-1$ $n-p^{tm-3}$ $(p-1)(2n+p^{-1}\eta(-(mt)_p)G_m^tG-1)$ $n-p^{tm-3}+p^{-2}G_m^tG$ $\Gamma = \left\{ {\begin{array}{*{20}{l}} \begin{array}{l} \frac{1}{2}(p - 1)(p - 2)n\;{\rm{if}}\;\eta ({(mt)_p}) = 1\\ \frac{1}{2}p(p - 1)n\;\;\;\;\;\;\;\;{\rm{if}}\;\eta ({(mt)_p}) = - 1 \end{array} \end{array}} \right.$ $n-p^{tm-3}-p^{-2}G_m^tG$ $\Gamma ' = \left\{ {\begin{array}{*{20}{l}} \begin{array}{l} \frac{1}{2}p(p - 1)n\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;\;\eta ({(mt)_p}) = 1\\ \frac{1}{2}(p - 1)(p - 2)n\;\;\;{\rm{if}}\;\;\eta ({(mt)_p}) = - 1 \end{array} \end{array}} \right.$
 Weight Frequency 0 1 $n$ $p-1$ $(p-1)p^{tm-3}$ $n+p^{-1}\eta(-(mt)_p)G_m^tG-1$ $n-p^{tm-3}$ $(p-1)(2n+p^{-1}\eta(-(mt)_p)G_m^tG-1)$ $n-p^{tm-3}+p^{-2}G_m^tG$ $\Gamma = \left\{ {\begin{array}{*{20}{l}} \begin{array}{l} \frac{1}{2}(p - 1)(p - 2)n\;{\rm{if}}\;\eta ({(mt)_p}) = 1\\ \frac{1}{2}p(p - 1)n\;\;\;\;\;\;\;\;{\rm{if}}\;\eta ({(mt)_p}) = - 1 \end{array} \end{array}} \right.$ $n-p^{tm-3}-p^{-2}G_m^tG$ $\Gamma ' = \left\{ {\begin{array}{*{20}{l}} \begin{array}{l} \frac{1}{2}p(p - 1)n\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;\;\eta ({(mt)_p}) = 1\\ \frac{1}{2}(p - 1)(p - 2)n\;\;\;{\rm{if}}\;\;\eta ({(mt)_p}) = - 1 \end{array} \end{array}} \right.$
 [1] Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2019  doi: 10.3934/amc.2020045 [2] Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003 [3] Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195 [4] Thanh Hieu Le, Marc Van Barel. On bounds of the Pythagoras number of the sum of square magnitudes of Laurent polynomials. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 91-102. doi: 10.3934/naco.2016001 [5] Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013 [6] Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032 [7] Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013 [8] Liqin Hu, Qin Yue, Fengmei Liu. Linear complexity of cyclotomic sequences of order six and BCH codes over GF(3). Advances in Mathematics of Communications, 2014, 8 (3) : 297-312. doi: 10.3934/amc.2014.8.297 [9] Guanglu Zhou. A quadratically convergent method for minimizing a sum of Euclidean norms with linear constraints. Journal of Industrial & Management Optimization, 2007, 3 (4) : 655-670. doi: 10.3934/jimo.2007.3.655 [10] Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275 [11] Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147 [12] Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407 [13] Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024 [14] Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001 [15] Libin Mou, Jiongmin Yong. Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. Journal of Industrial & Management Optimization, 2006, 2 (1) : 95-117. doi: 10.3934/jimo.2006.2.95 [16] Sigurdur Hafstein, Skuli Gudmundsson, Peter Giesl, Enrico Scalas. Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 939-956. doi: 10.3934/dcdsb.2018049 [17] Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020049 [18] Jianqin Zhou, Wanquan Liu, Xifeng Wang. Complete characterization of the first descent point distribution for the k-error linear complexity of 2n-periodic binary sequences. Advances in Mathematics of Communications, 2017, 11 (3) : 429-444. doi: 10.3934/amc.2017036 [19] Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1 [20] Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

2019 Impact Factor: 0.734

## Tools

Article outline

Figures and Tables