doi: 10.3934/amc.2020045

Complete weight enumerators of a class of linear codes over finite fields

1. 

School of Mathematical Sciences, Qufu Normal University, Shandong, 273165, China

2. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, China

*Corresponding author: Xiangli Kong

Received  April 2019 Published  November 2019

Fund Project: The work is partially supported by the National Natural Science Foundation of China (11701317, 11801303, 11571380) and the Natural Science Foundation of Shandong Province of China (ZR2016AM04). This work is also partially supported by Guangzhou Science and Technology Program (201607010144) and the Natural Science Foundation of Jiangsu Higher Education Institutions of China (17KJB110018)

We investigate a class of linear codes by choosing a proper defining set and determine their complete weight enumerators and weight enumerators. These codes have at most three weights and some of them are almost optimal so that they are suitable for applications in secret sharing schemes. This is a supplement of the results raised by Wang et al. (2017) and Kong et al. (2019).

Citation: Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, doi: 10.3934/amc.2020045
References:
[1]

J. AhnD. Ka and C. J. Li, Complete weight enumerators of a class of linear codes, Designs, Codes and Cryptography, 83 (2017), 83-99.  doi: 10.1007/s10623-016-0205-8.  Google Scholar

[2]

S. BaeC. J. Li and Q. Yue, On the complete weight enumerators of some reducible cyclic codes, Discrete Mathematics, 338 (2015), 2275-2287.  doi: 10.1016/j.disc.2015.05.016.  Google Scholar

[3]

I. F. Blake and K. Kith, On the complete weight enumerator of Reed-Solomon codes, SIAM J. Discret. Math., 4 (1991), 164-171.  doi: 10.1137/0404016.  Google Scholar

[4]

R. S. Coulter, Explicit evaluations of some Weil sums, Acta Arithmetica, 83 (1998), 241-251.  doi: 10.4064/aa-83-3-241-251.  Google Scholar

[5]

R. S. Coulter, Further evaluations of Weil sums, Acta Arithmetica, 86 (1998), 217-226.  doi: 10.4064/aa-86-3-217-226.  Google Scholar

[6]

C. S. Ding, Linear codes from some 2-designs, IEEE Transactions on Information Theory, 61 (2015), 3265-3275.  doi: 10.1109/TIT.2015.2420118.  Google Scholar

[7]

C. S. DingT. HellesethT. Kløve and X. S. Wang, A generic construction of Cartesian authentication codes, IEEE Transactions on Information Theory, 53 (2007), 2229-2235.  doi: 10.1109/TIT.2007.896872.  Google Scholar

[8]

C. S. Ding and X. S. Wang, A coding theory construction of new systematic authentication codes, Theoretical Computer Science, 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.  Google Scholar

[9]

C. S. Ding and J. X. Yin, A construction of optimal constant composition codes, Designs, Codes and Cryptography, 40 (2006), 157-165.  doi: 10.1007/s10623-006-0004-8.  Google Scholar

[10]

K. L. Ding and C. S. Ding, Binary linear codes with three weights, IEEE Communications Letters, 18 (2014), 1879-1882.  doi: 10.1109/LCOMM.2014.2361516.  Google Scholar

[11]

K. Ding and C. S. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Transactions on Information Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[12]

T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Transactions on Information Theory, 52 (2006), 2018-2032.  doi: 10.1109/TIT.2006.872854.  Google Scholar

[13]

Z. L. Heng and Q. Yue, Complete weight distributions of two classes of cyclic codes, Cryptography and Communications, 9 (2017), 323-343.  doi: 10.1007/s12095-015-0177-y.  Google Scholar

[14]

K. Kith, Complete Weight Enumeration of Reed-Solomon Codes, Master's thesis, University of Waterloo in Waterloo, 1989. Google Scholar

[15]

X. L. Kong and S. D. Yang, Complete weight enumerators of a class of linear codes with two or three weights, Discrete Mathematics, 342 (2019), 3166-3176.  doi: 10.1016/j.disc.2019.06.025.  Google Scholar

[16]

C. J. LiS. BaeJ. AhnS. D. Yang and Z. A. Yao, Complete weight enumerators of some linear codes and their applications, Designs, Codes and Cryptography, 81 (2016), 153-168.  doi: 10.1007/s10623-015-0136-9.  Google Scholar

[17]

C. J. LiS. Bae and S. D. Yang, Some two-weight and three-weight linear codes, Advances in Mathematics of Communications, 13 (2019), 195-211.  doi: 10.3934/amc.2019013.  Google Scholar

[18]

C. J. LiQ. Yue and F. W. Fu, Complete weight enumerators of some cyclic codes, Designs, Codes and Cryptography, 80 (2016), 295-315.  doi: 10.1007/s10623-015-0091-5.  Google Scholar

[19]

C. J. LiQ. Yue and Z. L. Heng, Weight distributions of a class of cyclic codes from $ \mathbb{F}_l $-conjugates, Advances in Mathematics of Communications, 9 (2015), 341-352.  doi: 10.3934/amc.2015.9.341.  Google Scholar

[20]

R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983.  Google Scholar

[21]

H. B. LiuQ. Y. Liao and X. F. Wang, Complete weight enumerator for a class of linear codes from defining sets and their applications, Journal of Systems Science and Complexity, 32 (2019), 947-969.  doi: 10.1007/s11424-018-7414-3.  Google Scholar

[22]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[23]

A. Sharma and G. K. Bakshi, The weight distribution of some irreducible cyclic codes, Finite Fields and Their Applications, 18 (2012), 144-159.  doi: 10.1016/j.ffa.2011.07.002.  Google Scholar

[24]

M. J. Shi and Y. P. Zhang, Quasi-twisted codes with constacyclic constituent codes, Finite Fields and Their Applications, 39 (2016), 159-178.  doi: 10.1016/j.ffa.2016.01.010.  Google Scholar

[25]

M. J. ShiL. Q. QianL. SokN. Aydin and P. Solé, On constacyclic codes over $ \mathbb{Z}_4[u]/\langle u^2-1 \rangle$ and their Gray images, Finite Fields and Their Applications, 45 (2017), 86-95.  doi: 10.1016/j.ffa.2016.11.016.  Google Scholar

[26]

M. J. ShiR. S. WuL. Q. QianL. Sok and P. Solé, New classes of $p$-ary few weight codes, Bulletin of the Malaysian Mathematical Sciences Society, 42 (2019), 1393-1412.  doi: 10.1007/s40840-017-0553-1.  Google Scholar

[27]

L. SokM. J. Shi and P. Solé, Construction of optimal LCD codes over large finite fields, Finite Fields and Their Applications, 50 (2018), 138-153.  doi: 10.1016/j.ffa.2017.11.007.  Google Scholar

[28]

M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, Journal of Number Theory, 55 (1995), 145-159.  doi: 10.1006/jnth.1995.1133.  Google Scholar

[29]

G. Vega, The weight distribution for any irreducible cyclic code of length $p^m$, Applicable Algebra in Engineering, Communication and Computing, 29 (2018), 363-370.  doi: 10.1007/s00200-017-0347-6.  Google Scholar

[30]

Q. Y. WangF. LiK. L. Ding and D. D. Lin, Complete weight enumerators of two classes of linear codes, Discrete Mathematics, 340 (2017), 467-480.  doi: 10.1016/j.disc.2016.09.003.  Google Scholar

[31]

Y. S. WuQ. Yue and S. Q. Fan, Further factorization of $x^n -1$ over a finite field, Finite Fields and Their Applications, 54 (2018), 197-215.  doi: 10.1016/j.ffa.2018.07.007.  Google Scholar

[32]

Y. S. WuQ. YueX. M. Zhu and S. D. Yang, Weight enumerators of reducible cyclic codes and their dual codes, Discrete Mathematics, 342 (2019), 671-682.  doi: 10.1016/j.disc.2018.10.035.  Google Scholar

[33]

S. D. YangZ. A. Yao and C. A. Zhao, The weight distributions of two classes of $p$-ary cyclic codes with few weights, Finite Fields and Their Applications, 44 (2017), 76-91.  doi: 10.1016/j.ffa.2016.11.004.  Google Scholar

[34]

S. D. YangZ. A. Yao and C. A. Zhao, The weight enumerator of the duals of a class of cyclic codes with three zeros, Applicable Algebra in Engineering, Communication and Computing, 26 (2015), 347-367.  doi: 10.1007/s00200-015-0255-6.  Google Scholar

[35]

S. D. YangX. L. Kong and C. M. Tang, A construction of linear codes and their complete weight enumerators, Finite Fields and Their Applications, 48 (2017), 196-226.  doi: 10.1016/j.ffa.2017.08.001.  Google Scholar

[36]

S. D. Yang and Z. A. Yao, Complete weight enumerators of a class of linear codes, Discrete Mathematics, 340 (2017), 729-739.  doi: 10.1016/j.disc.2016.11.029.  Google Scholar

[37]

J. Yuan and C. S. Ding, Secret sharing schemes from three classes of linear codes, IEEE Transactions on Information Theory, 52 (2006), 206-212.  doi: 10.1109/TIT.2005.860412.  Google Scholar

show all references

References:
[1]

J. AhnD. Ka and C. J. Li, Complete weight enumerators of a class of linear codes, Designs, Codes and Cryptography, 83 (2017), 83-99.  doi: 10.1007/s10623-016-0205-8.  Google Scholar

[2]

S. BaeC. J. Li and Q. Yue, On the complete weight enumerators of some reducible cyclic codes, Discrete Mathematics, 338 (2015), 2275-2287.  doi: 10.1016/j.disc.2015.05.016.  Google Scholar

[3]

I. F. Blake and K. Kith, On the complete weight enumerator of Reed-Solomon codes, SIAM J. Discret. Math., 4 (1991), 164-171.  doi: 10.1137/0404016.  Google Scholar

[4]

R. S. Coulter, Explicit evaluations of some Weil sums, Acta Arithmetica, 83 (1998), 241-251.  doi: 10.4064/aa-83-3-241-251.  Google Scholar

[5]

R. S. Coulter, Further evaluations of Weil sums, Acta Arithmetica, 86 (1998), 217-226.  doi: 10.4064/aa-86-3-217-226.  Google Scholar

[6]

C. S. Ding, Linear codes from some 2-designs, IEEE Transactions on Information Theory, 61 (2015), 3265-3275.  doi: 10.1109/TIT.2015.2420118.  Google Scholar

[7]

C. S. DingT. HellesethT. Kløve and X. S. Wang, A generic construction of Cartesian authentication codes, IEEE Transactions on Information Theory, 53 (2007), 2229-2235.  doi: 10.1109/TIT.2007.896872.  Google Scholar

[8]

C. S. Ding and X. S. Wang, A coding theory construction of new systematic authentication codes, Theoretical Computer Science, 330 (2005), 81-99.  doi: 10.1016/j.tcs.2004.09.011.  Google Scholar

[9]

C. S. Ding and J. X. Yin, A construction of optimal constant composition codes, Designs, Codes and Cryptography, 40 (2006), 157-165.  doi: 10.1007/s10623-006-0004-8.  Google Scholar

[10]

K. L. Ding and C. S. Ding, Binary linear codes with three weights, IEEE Communications Letters, 18 (2014), 1879-1882.  doi: 10.1109/LCOMM.2014.2361516.  Google Scholar

[11]

K. Ding and C. S. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Transactions on Information Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[12]

T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Transactions on Information Theory, 52 (2006), 2018-2032.  doi: 10.1109/TIT.2006.872854.  Google Scholar

[13]

Z. L. Heng and Q. Yue, Complete weight distributions of two classes of cyclic codes, Cryptography and Communications, 9 (2017), 323-343.  doi: 10.1007/s12095-015-0177-y.  Google Scholar

[14]

K. Kith, Complete Weight Enumeration of Reed-Solomon Codes, Master's thesis, University of Waterloo in Waterloo, 1989. Google Scholar

[15]

X. L. Kong and S. D. Yang, Complete weight enumerators of a class of linear codes with two or three weights, Discrete Mathematics, 342 (2019), 3166-3176.  doi: 10.1016/j.disc.2019.06.025.  Google Scholar

[16]

C. J. LiS. BaeJ. AhnS. D. Yang and Z. A. Yao, Complete weight enumerators of some linear codes and their applications, Designs, Codes and Cryptography, 81 (2016), 153-168.  doi: 10.1007/s10623-015-0136-9.  Google Scholar

[17]

C. J. LiS. Bae and S. D. Yang, Some two-weight and three-weight linear codes, Advances in Mathematics of Communications, 13 (2019), 195-211.  doi: 10.3934/amc.2019013.  Google Scholar

[18]

C. J. LiQ. Yue and F. W. Fu, Complete weight enumerators of some cyclic codes, Designs, Codes and Cryptography, 80 (2016), 295-315.  doi: 10.1007/s10623-015-0091-5.  Google Scholar

[19]

C. J. LiQ. Yue and Z. L. Heng, Weight distributions of a class of cyclic codes from $ \mathbb{F}_l $-conjugates, Advances in Mathematics of Communications, 9 (2015), 341-352.  doi: 10.3934/amc.2015.9.341.  Google Scholar

[20]

R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983.  Google Scholar

[21]

H. B. LiuQ. Y. Liao and X. F. Wang, Complete weight enumerator for a class of linear codes from defining sets and their applications, Journal of Systems Science and Complexity, 32 (2019), 947-969.  doi: 10.1007/s11424-018-7414-3.  Google Scholar

[22]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[23]

A. Sharma and G. K. Bakshi, The weight distribution of some irreducible cyclic codes, Finite Fields and Their Applications, 18 (2012), 144-159.  doi: 10.1016/j.ffa.2011.07.002.  Google Scholar

[24]

M. J. Shi and Y. P. Zhang, Quasi-twisted codes with constacyclic constituent codes, Finite Fields and Their Applications, 39 (2016), 159-178.  doi: 10.1016/j.ffa.2016.01.010.  Google Scholar

[25]

M. J. ShiL. Q. QianL. SokN. Aydin and P. Solé, On constacyclic codes over $ \mathbb{Z}_4[u]/\langle u^2-1 \rangle$ and their Gray images, Finite Fields and Their Applications, 45 (2017), 86-95.  doi: 10.1016/j.ffa.2016.11.016.  Google Scholar

[26]

M. J. ShiR. S. WuL. Q. QianL. Sok and P. Solé, New classes of $p$-ary few weight codes, Bulletin of the Malaysian Mathematical Sciences Society, 42 (2019), 1393-1412.  doi: 10.1007/s40840-017-0553-1.  Google Scholar

[27]

L. SokM. J. Shi and P. Solé, Construction of optimal LCD codes over large finite fields, Finite Fields and Their Applications, 50 (2018), 138-153.  doi: 10.1016/j.ffa.2017.11.007.  Google Scholar

[28]

M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, Journal of Number Theory, 55 (1995), 145-159.  doi: 10.1006/jnth.1995.1133.  Google Scholar

[29]

G. Vega, The weight distribution for any irreducible cyclic code of length $p^m$, Applicable Algebra in Engineering, Communication and Computing, 29 (2018), 363-370.  doi: 10.1007/s00200-017-0347-6.  Google Scholar

[30]

Q. Y. WangF. LiK. L. Ding and D. D. Lin, Complete weight enumerators of two classes of linear codes, Discrete Mathematics, 340 (2017), 467-480.  doi: 10.1016/j.disc.2016.09.003.  Google Scholar

[31]

Y. S. WuQ. Yue and S. Q. Fan, Further factorization of $x^n -1$ over a finite field, Finite Fields and Their Applications, 54 (2018), 197-215.  doi: 10.1016/j.ffa.2018.07.007.  Google Scholar

[32]

Y. S. WuQ. YueX. M. Zhu and S. D. Yang, Weight enumerators of reducible cyclic codes and their dual codes, Discrete Mathematics, 342 (2019), 671-682.  doi: 10.1016/j.disc.2018.10.035.  Google Scholar

[33]

S. D. YangZ. A. Yao and C. A. Zhao, The weight distributions of two classes of $p$-ary cyclic codes with few weights, Finite Fields and Their Applications, 44 (2017), 76-91.  doi: 10.1016/j.ffa.2016.11.004.  Google Scholar

[34]

S. D. YangZ. A. Yao and C. A. Zhao, The weight enumerator of the duals of a class of cyclic codes with three zeros, Applicable Algebra in Engineering, Communication and Computing, 26 (2015), 347-367.  doi: 10.1007/s00200-015-0255-6.  Google Scholar

[35]

S. D. YangX. L. Kong and C. M. Tang, A construction of linear codes and their complete weight enumerators, Finite Fields and Their Applications, 48 (2017), 196-226.  doi: 10.1016/j.ffa.2017.08.001.  Google Scholar

[36]

S. D. Yang and Z. A. Yao, Complete weight enumerators of a class of linear codes, Discrete Mathematics, 340 (2017), 729-739.  doi: 10.1016/j.disc.2016.11.029.  Google Scholar

[37]

J. Yuan and C. S. Ding, Secret sharing schemes from three classes of linear codes, IEEE Transactions on Information Theory, 52 (2006), 206-212.  doi: 10.1109/TIT.2005.860412.  Google Scholar

Table 1.  Weight distribution of $ \mathcal{C} _{D_0} $ for odd $ e $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ p^{e-1} -1 $
$ (p-1) (p^{e-2}- p^{-2} \varepsilon_0 \eta_e(a) \sqrt{p^*} ) $ $ \dfrac{p-1}{2p} {\big( {{ q+ \varepsilon_0 \eta_e(a) \sqrt{p^*}}} \big) } $
$ (p-1) (p^{e-2}+ p^{-2} \varepsilon_0 \eta_e(a) \sqrt{p^*} ) $ $ \dfrac{p-1}{2p} {\big( {{ q- \varepsilon_0 \eta_e(a) \sqrt{p^*}}} \big) } $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ p^{e-1} -1 $
$ (p-1) (p^{e-2}- p^{-2} \varepsilon_0 \eta_e(a) \sqrt{p^*} ) $ $ \dfrac{p-1}{2p} {\big( {{ q+ \varepsilon_0 \eta_e(a) \sqrt{p^*}}} \big) } $
$ (p-1) (p^{e-2}+ p^{-2} \varepsilon_0 \eta_e(a) \sqrt{p^*} ) $ $ \dfrac{p-1}{2p} {\big( {{ q- \varepsilon_0 \eta_e(a) \sqrt{p^*}}} \big) } $
Table 2.  Weight distribution of $ \mathcal{C} _{D_0} $ for even $ e $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ p^{e-1} + (p-1)p^{-1} \varepsilon_0 \eta_e(a)-1 $
$ (p-1) (p^{e-2}+ p^{-1} \varepsilon_0 \eta_e(a) ) $ $ (p-1) {\big( {{p^{e-1}- p^{-1} \varepsilon_0 \eta_e(a)}} \big) } $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ p^{e-1} + (p-1)p^{-1} \varepsilon_0 \eta_e(a)-1 $
$ (p-1) (p^{e-2}+ p^{-1} \varepsilon_0 \eta_e(a) ) $ $ (p-1) {\big( {{p^{e-1}- p^{-1} \varepsilon_0 \eta_e(a)}} \big) } $
Table 3.  Weight distribution of $ \mathcal{C} _{D_c} $ for odd $ e $ and $ c \neq 0 $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ p^{e-1} -1 $
$ n_c-p^{e-2} + p^{-2}\varepsilon_0 \eta_e(a) \sqrt{p^*}\eta(-c) $ $ \frac{p-1}{2} n_c $
$ n_c-p^{e-2} - p^{-2}\varepsilon_0 \eta_e(a) \sqrt{p^*}\eta(-c) $ $ \frac{p-1}{2}{\big( {{p^{e-1} - p^{-1}\varepsilon_0 \eta_e(a) \sqrt{p^*}\eta(-c) }} \big) } $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ p^{e-1} -1 $
$ n_c-p^{e-2} + p^{-2}\varepsilon_0 \eta_e(a) \sqrt{p^*}\eta(-c) $ $ \frac{p-1}{2} n_c $
$ n_c-p^{e-2} - p^{-2}\varepsilon_0 \eta_e(a) \sqrt{p^*}\eta(-c) $ $ \frac{p-1}{2}{\big( {{p^{e-1} - p^{-1}\varepsilon_0 \eta_e(a) \sqrt{p^*}\eta(-c) }} \big) } $
Table 4.  Weight distribution of $ \mathcal{C} _{D_c} $ for even $ e $ and $ c\neq 0 $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ \frac{p+1}{2}p^{e-1}+\frac{p-1}{2} p^{-1}\varepsilon_0 \eta_e(a)-1 $
$ (p-1)p^{e-2} -2 p^{-1}\varepsilon_0 \eta_e(a) $ $ \frac{p-1}{2}n_c $
Weight $ w $ Frequency $ A_w $
$ 0 $ $ 1 $
$ (p-1) p^{e-2} $ $ \frac{p+1}{2}p^{e-1}+\frac{p-1}{2} p^{-1}\varepsilon_0 \eta_e(a)-1 $
$ (p-1)p^{e-2} -2 p^{-1}\varepsilon_0 \eta_e(a) $ $ \frac{p-1}{2}n_c $
[1]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020044

[2]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[3]

Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013

[4]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[5]

Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013

[6]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[7]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

[8]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[9]

Diana M. Thomas, Ashley Ciesla, James A. Levine, John G. Stevens, Corby K. Martin. A mathematical model of weight change with adaptation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 873-887. doi: 10.3934/mbe.2009.6.873

[10]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[11]

Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697

[12]

Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014

[13]

Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

[14]

Hans-Christoph Grunau, Guido Sweers. A clamped plate with a uniform weight may change sign. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 761-766. doi: 10.3934/dcdss.2014.7.761

[15]

Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011

[16]

Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023

[17]

Christine A. Kelley, Deepak Sridhara. Eigenvalue bounds on the pseudocodeword weight of expander codes. Advances in Mathematics of Communications, 2007, 1 (3) : 287-306. doi: 10.3934/amc.2007.1.287

[18]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[19]

Heide Gluesing-Luerssen. Partitions of Frobenius rings induced by the homogeneous weight. Advances in Mathematics of Communications, 2014, 8 (2) : 191-207. doi: 10.3934/amc.2014.8.191

[20]

Zuzana Došlá, Mauro Marini, Serena Matucci. Global Kneser solutions to nonlinear equations with indefinite weight. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3297-3308. doi: 10.3934/dcdsb.2018252

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (25)
  • HTML views (32)
  • Cited by (0)

Other articles
by authors

[Back to Top]