doi: 10.3934/amc.2020046

A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions

Instituto Superior Técnico - University of Lisbon, SQIG - IT, Lisbon, Portugal

Received  May 2019 Revised  September 2019 Published  November 2019

Fund Project: The author is supported by DP-PMI and FCT (Portugal) through the grant PD/BD/135181/2017

In this work, we propose a post-quantum UC-commitment scheme in the Global Random Oracle Model, where only one non-programmable random oracle is available. The security of our proposal is based on two well-established post-quantum hardness assumptions from coding theory: The Syndrome Decoding and the Goppa Distinguisher. We prove that our proposal is perfectly hiding and computationally binding.

Citation: Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, doi: 10.3934/amc.2020046
References:
[1]

P. S. L. M. Barreto, B. David, R. Dowsley, K. Morozov and A. C. A. Nascimento, A Framework for Efficient Adaptively Secure Composable Oblivious Transfer in the ROM, Cryptology ePrint Archive, Report 2017/993, 2017, https://eprint.iacr.org/2017/993. Google Scholar

[2]

A. BeckerA. JouxA. May and A. Meurer, Decoding random binary linear codes in $2^{n/20}$: How $1+1 = 0$ improves information set decoding, Advances in Cryptology—EUROCRYPT 2012, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7237 (2012), 520-536.  doi: 10.1007/978-3-642-29011-4_31.  Google Scholar

[3]

M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols, CCS '93 Proceedings of the 1st ACM Conference on Computer and Communications Security, (1993), 62–73. doi: 10.1145/168588.168596.  Google Scholar

[4]

E. R. BerlekampR. J. McEliece and H. C. A. van Tilborg, On the inherent intractability of certain coding problems, IEEE Transactions on Information Theory, 24 (1978), 384-386.  doi: 10.1109/tit.1978.1055873.  Google Scholar

[5]

P. Branco, J. T. Ding, M. Goulão and P. Mateus, Universally Composable Oblivious Transfer Protocol Based on the RLWE Assumption, Cryptology ePrint Archive, Report 2018/1155, 2018, https://eprint.iacr.org/2018/1155. Google Scholar

[6]

Megha Byali, Arpita Patra, Divya Ravi and Pratik Sarkar., Fast and Universally-Composable Oblivious Transfer and Commitment Scheme with Adaptive Security, Cryptology ePrint Archive, Report 2017/1165, 2017, https://eprint.iacr.org/2017/1165. Google Scholar

[7]

J. CamenischM. DrijversT. GagliardoniA. Lehmann and G. Neven, The wonderful world of global random oracles, Advances in cryptology—EUROCRYPT 2018. Part I, Lecture Notes in Comput. Sci., Springer, Cham, 10820 (2018), 280-312.   Google Scholar

[8]

R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001), IEEE Computer Soc., Los Alamitos, CA, (2001), 136–145.  Google Scholar

[9]

R. Canetti and M. Fischlin, Universally composable commitments, Advances in Cryptology—CRYPTO 2001, Berlin, Heidelberg, Springer Berlin Heidelberg, (2001), 19–40. doi: 10.1007/3-540-44647-8_2.  Google Scholar

[10]

R. Canetti, A. Jain and A. Scafuro, Practical UC security with a global random oracle, Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS '14, New York, NY, USA, ACM, (2014), 597–608. doi: 10.1145/2660267.2660374.  Google Scholar

[11]

R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai, Universally composable two-party and multi-party secure computation, Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, ACM, New York, (2002), 494–503. doi: 10.1145/509907.509980.  Google Scholar

[12]

I. CascudoI. DamgårdB. DavidI. GiacomelliJ. B. Nielse and R. Trifiletti, Additively homomorphic uc commitments with optimal amortized overhead, Public-Key Cryptography—PKC 2015, Berlin, Heidelberg, Springer Berlin Heidelberg, 9020 (2015), 495-515.  doi: 10.1007/978-3-662-46447-2_22.  Google Scholar

[13]

I. Cascudo, I. Damgård, B. David, N. Döttling and J. B.Nielsen, Rate-1, linear time and additively homomorphic uc commitments, Advances in Cryptology—CRYPTO 2016, Berlin, Heidelberg, Springer Berlin Heidelberg, (2016), 179–207.  Google Scholar

[14]

N. T. Courtois, M. Finiasz and N. Sendrier, How to achieve a McEliece-based digital signature scheme, Advances in Cryptology—ASIACRYPT 2001, Berlin, Heidelberg, Springer Berlin Heidelberg, 2248 (2001), 157–174. doi: 10.1007/3-540-45682-1_10.  Google Scholar

[15]

I. Damgård and J. B. Nielsen, Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor, Advances in Cryptology—CRYPTO 2002, Berlin, Heidelberg, Springer Berlin Heidelberg, 2442 (2002), 581-596.  doi: 10.1007/3-540-45708-9_37.  Google Scholar

[16]

T. Debris-Alazard, N. Sendrier and J.-P. Tillich, Wave: A New Code-Based Signature Scheme, Cryptology ePrint Archive, Report 2018/996, 2018, https://eprint.iacr.org/2018/996. Google Scholar

[17]

A. EsserR. Kübler and A. May, LPN decoded, Advances in cryptology—CRYPTO 2017. Part II, Lecture Notes in Comput. Sci., Springer, Cham, 10402 (2017), 486-514.   Google Scholar

[18]

J.-C. FaugèreV. Gauthier-UmañaA. OtmaniL. Perret and J. Tillich, A distinguisher for high rate McEliece cryptosystems, IEEE Trans. Inform. Theory, 59 (2013), 6830-6844.  doi: 10.1109/TIT.2013.2272036.  Google Scholar

[19]

M. FischlinB. Libert and M. Manulis, Non-interactive and re-usable universally composable string commitments with adaptive security, Advances in Cryptology—ASIACRYPT 2011, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7073 (2011), 468-485.  doi: 10.1007/978-3-642-25385-0_25.  Google Scholar

[20]

E. Fujisaki, Improving practical UC-secure commitments based on the DDH assumption, Security and Cryptography for Networks, Lecture Notes in Comput. Sci., Springer, [Cham], 9841 (2016), 257-272.  doi: 10.1007/978-3-319-44618-9_14.  Google Scholar

[21]

J. A. GarayY. IshaiR. Kumaresan and H. Wee, On the complexity of UC commitments, Advances in Cryptology—EUROCRYPT 2014, Lecture Notes in Comput. Sci., Springer, Heidelberg, 8441 (2014), 677-694.  doi: 10.1007/978-3-642-55220-5_37.  Google Scholar

[22]

D. Hofheinz and J. Müller-Quade, Universally composable commitments using random oracles, Theory of cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 2951 (2004), 58-76.  doi: 10.1007/978-3-540-24638-1_4.  Google Scholar

[23]

A. JainS. KrennK. Pietrzak and A. Tentes, Commitments and efficient zero-knowledge proofs from learning parity with noise, Advances in Cryptology—ASIACRYPT 2012, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7658 (2012), 663-680.  doi: 10.1007/978-3-642-34961-4_40.  Google Scholar

[24]

J. Kilian, Founding cryptography on oblivious transfer, Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC '88, New York, NY, USA, ACM, (1988), 20–31. Google Scholar

[25]

E. Kirshanova, Improved quantum information set decoding, Post-quantum cryptography, Lecture Notes in Comput. Sci., Springer, Cham, 10786 (2018), 507-527.  doi: 10.1002/fld.4317.  Google Scholar

[26]

Y. Lindell, Highly-efficient universally-composable commitments based on the DDH assumption, Advances in cryptology—EUROCRYPT 2011, Lecture Notes in Comput. Sci., Springer, Heidelberg, 6632 (2011), 446–466. doi: 10.1007/978-3-642-20465-4_25.  Google Scholar

[27]

P. Loidreau and N. Sendrier, Weak keys in the McEliece public-key cryptosystem, IEEE Transactions on Information Theory, 47 (2001), 1207-1211.  doi: 10.1109/18.915687.  Google Scholar

[28]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[29]

R. J. McEliece, A public-key cryptosystem based on algebraic coding theory, JPL DSN Progress Report, 44 (1978). Google Scholar

[30]

C. PeikertV. Vaikuntanathan and B. Waters, A framework for efficient and composable oblivious transfer, Advances in cryptology—CRYPTO 2008, Lecture Notes in Comput. Sci., Springer, Berlin, 5157 (2008), 554-571.  doi: 10.1007/978-3-540-85174-5_31.  Google Scholar

[31]

P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal on Computing, 26 (1997), 1484-1509.  doi: 10.1137/S0097539795293172.  Google Scholar

[32]

X. XieR. Xue and M. Q. Wang, Zero knowledge proofs from ring-LWE, Cryptology and network security, Lecture Notes in Comput. Sci., Springer, Cham, 8257 (2013), 57-73.  doi: 10.1007/978-3-319-02937-5_4.  Google Scholar

show all references

References:
[1]

P. S. L. M. Barreto, B. David, R. Dowsley, K. Morozov and A. C. A. Nascimento, A Framework for Efficient Adaptively Secure Composable Oblivious Transfer in the ROM, Cryptology ePrint Archive, Report 2017/993, 2017, https://eprint.iacr.org/2017/993. Google Scholar

[2]

A. BeckerA. JouxA. May and A. Meurer, Decoding random binary linear codes in $2^{n/20}$: How $1+1 = 0$ improves information set decoding, Advances in Cryptology—EUROCRYPT 2012, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7237 (2012), 520-536.  doi: 10.1007/978-3-642-29011-4_31.  Google Scholar

[3]

M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols, CCS '93 Proceedings of the 1st ACM Conference on Computer and Communications Security, (1993), 62–73. doi: 10.1145/168588.168596.  Google Scholar

[4]

E. R. BerlekampR. J. McEliece and H. C. A. van Tilborg, On the inherent intractability of certain coding problems, IEEE Transactions on Information Theory, 24 (1978), 384-386.  doi: 10.1109/tit.1978.1055873.  Google Scholar

[5]

P. Branco, J. T. Ding, M. Goulão and P. Mateus, Universally Composable Oblivious Transfer Protocol Based on the RLWE Assumption, Cryptology ePrint Archive, Report 2018/1155, 2018, https://eprint.iacr.org/2018/1155. Google Scholar

[6]

Megha Byali, Arpita Patra, Divya Ravi and Pratik Sarkar., Fast and Universally-Composable Oblivious Transfer and Commitment Scheme with Adaptive Security, Cryptology ePrint Archive, Report 2017/1165, 2017, https://eprint.iacr.org/2017/1165. Google Scholar

[7]

J. CamenischM. DrijversT. GagliardoniA. Lehmann and G. Neven, The wonderful world of global random oracles, Advances in cryptology—EUROCRYPT 2018. Part I, Lecture Notes in Comput. Sci., Springer, Cham, 10820 (2018), 280-312.   Google Scholar

[8]

R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001), IEEE Computer Soc., Los Alamitos, CA, (2001), 136–145.  Google Scholar

[9]

R. Canetti and M. Fischlin, Universally composable commitments, Advances in Cryptology—CRYPTO 2001, Berlin, Heidelberg, Springer Berlin Heidelberg, (2001), 19–40. doi: 10.1007/3-540-44647-8_2.  Google Scholar

[10]

R. Canetti, A. Jain and A. Scafuro, Practical UC security with a global random oracle, Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS '14, New York, NY, USA, ACM, (2014), 597–608. doi: 10.1145/2660267.2660374.  Google Scholar

[11]

R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai, Universally composable two-party and multi-party secure computation, Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, ACM, New York, (2002), 494–503. doi: 10.1145/509907.509980.  Google Scholar

[12]

I. CascudoI. DamgårdB. DavidI. GiacomelliJ. B. Nielse and R. Trifiletti, Additively homomorphic uc commitments with optimal amortized overhead, Public-Key Cryptography—PKC 2015, Berlin, Heidelberg, Springer Berlin Heidelberg, 9020 (2015), 495-515.  doi: 10.1007/978-3-662-46447-2_22.  Google Scholar

[13]

I. Cascudo, I. Damgård, B. David, N. Döttling and J. B.Nielsen, Rate-1, linear time and additively homomorphic uc commitments, Advances in Cryptology—CRYPTO 2016, Berlin, Heidelberg, Springer Berlin Heidelberg, (2016), 179–207.  Google Scholar

[14]

N. T. Courtois, M. Finiasz and N. Sendrier, How to achieve a McEliece-based digital signature scheme, Advances in Cryptology—ASIACRYPT 2001, Berlin, Heidelberg, Springer Berlin Heidelberg, 2248 (2001), 157–174. doi: 10.1007/3-540-45682-1_10.  Google Scholar

[15]

I. Damgård and J. B. Nielsen, Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor, Advances in Cryptology—CRYPTO 2002, Berlin, Heidelberg, Springer Berlin Heidelberg, 2442 (2002), 581-596.  doi: 10.1007/3-540-45708-9_37.  Google Scholar

[16]

T. Debris-Alazard, N. Sendrier and J.-P. Tillich, Wave: A New Code-Based Signature Scheme, Cryptology ePrint Archive, Report 2018/996, 2018, https://eprint.iacr.org/2018/996. Google Scholar

[17]

A. EsserR. Kübler and A. May, LPN decoded, Advances in cryptology—CRYPTO 2017. Part II, Lecture Notes in Comput. Sci., Springer, Cham, 10402 (2017), 486-514.   Google Scholar

[18]

J.-C. FaugèreV. Gauthier-UmañaA. OtmaniL. Perret and J. Tillich, A distinguisher for high rate McEliece cryptosystems, IEEE Trans. Inform. Theory, 59 (2013), 6830-6844.  doi: 10.1109/TIT.2013.2272036.  Google Scholar

[19]

M. FischlinB. Libert and M. Manulis, Non-interactive and re-usable universally composable string commitments with adaptive security, Advances in Cryptology—ASIACRYPT 2011, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7073 (2011), 468-485.  doi: 10.1007/978-3-642-25385-0_25.  Google Scholar

[20]

E. Fujisaki, Improving practical UC-secure commitments based on the DDH assumption, Security and Cryptography for Networks, Lecture Notes in Comput. Sci., Springer, [Cham], 9841 (2016), 257-272.  doi: 10.1007/978-3-319-44618-9_14.  Google Scholar

[21]

J. A. GarayY. IshaiR. Kumaresan and H. Wee, On the complexity of UC commitments, Advances in Cryptology—EUROCRYPT 2014, Lecture Notes in Comput. Sci., Springer, Heidelberg, 8441 (2014), 677-694.  doi: 10.1007/978-3-642-55220-5_37.  Google Scholar

[22]

D. Hofheinz and J. Müller-Quade, Universally composable commitments using random oracles, Theory of cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 2951 (2004), 58-76.  doi: 10.1007/978-3-540-24638-1_4.  Google Scholar

[23]

A. JainS. KrennK. Pietrzak and A. Tentes, Commitments and efficient zero-knowledge proofs from learning parity with noise, Advances in Cryptology—ASIACRYPT 2012, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7658 (2012), 663-680.  doi: 10.1007/978-3-642-34961-4_40.  Google Scholar

[24]

J. Kilian, Founding cryptography on oblivious transfer, Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC '88, New York, NY, USA, ACM, (1988), 20–31. Google Scholar

[25]

E. Kirshanova, Improved quantum information set decoding, Post-quantum cryptography, Lecture Notes in Comput. Sci., Springer, Cham, 10786 (2018), 507-527.  doi: 10.1002/fld.4317.  Google Scholar

[26]

Y. Lindell, Highly-efficient universally-composable commitments based on the DDH assumption, Advances in cryptology—EUROCRYPT 2011, Lecture Notes in Comput. Sci., Springer, Heidelberg, 6632 (2011), 446–466. doi: 10.1007/978-3-642-20465-4_25.  Google Scholar

[27]

P. Loidreau and N. Sendrier, Weak keys in the McEliece public-key cryptosystem, IEEE Transactions on Information Theory, 47 (2001), 1207-1211.  doi: 10.1109/18.915687.  Google Scholar

[28]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[29]

R. J. McEliece, A public-key cryptosystem based on algebraic coding theory, JPL DSN Progress Report, 44 (1978). Google Scholar

[30]

C. PeikertV. Vaikuntanathan and B. Waters, A framework for efficient and composable oblivious transfer, Advances in cryptology—CRYPTO 2008, Lecture Notes in Comput. Sci., Springer, Berlin, 5157 (2008), 554-571.  doi: 10.1007/978-3-540-85174-5_31.  Google Scholar

[31]

P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal on Computing, 26 (1997), 1484-1509.  doi: 10.1137/S0097539795293172.  Google Scholar

[32]

X. XieR. Xue and M. Q. Wang, Zero knowledge proofs from ring-LWE, Cryptology and network security, Lecture Notes in Comput. Sci., Springer, Cham, 8257 (2013), 57-73.  doi: 10.1007/978-3-319-02937-5_4.  Google Scholar

Figure 1.  Sigma protocol structure. The value $ x $ is public information and $ w $ is usually called the witness. Let $ \sim $ be a relation and $ \mathcal{R} = \{(x, w):x\sim w\} $. A transcript $ T = ( {com}, {ch}, {resp}) $ is the tuple of messages exchange and we say that it is valid when $ \mathsf{V}_2(x, T) = 1 $
Figure 2.  $ \left( \mathsf{P}, \mathsf{V}\right)_{ \mathsf{xLPN}} $ scheme. Let $ \mathbf{A}\in\{0,1\}^{k\times n} $, $ \mathbf{s}\in \{0,1\}^k $, $ \mathbf{e}\in \{0,1\}^n $ such that $ \mathbf{e}\in \mathfrak{B}_{ = \omega}^n $ and let $ \mathbf{y} \in \{0,1\}^{n} $ such that $ \mathbf{s} \mathbf{A}+ \mathbf{e} = \mathbf{y} $. By $ \mathcal{C}_ \mathbf{A} $ we denote the code defined by $ \mathbf{A} $. Let $ S $ be the set of permutations of size $ n $ and let $ ( \mathsf{Com}, \mathsf{Ver}) $ be a commitment scheme where $ \mathsf{Com} $ is the commitment algorithm and $ \mathsf{Ver} $ is the opening algorithm
Figure 3.  Commitment phase. $ \mathsf{GenTd} $ creates a matrix $ \mathbf{A} $ and a trapdoor, according to Lemma 1 and $ \mathsf{gRO} $ is the global random oracle. The random strings $ t_1 $, $ t_2 $ and $ u_1 $ are omitted
Figure 4.  Opening phase. $ ( \mathsf{P}^\varepsilon, \mathsf{V}^\varepsilon) $ is the sigma-protocol $ ( \mathsf{P}, \mathsf{V})_ \mathsf{xLPN} $ repeated $ \mathcal{O}(1/\varepsilon) $, where $ \mathsf{P}^\varepsilon = ( \mathsf{P}^\varepsilon_1, \mathsf{P}^\varepsilon_2) $ and $ \mathsf{V}^\varepsilon = ( \mathsf{V}^\varepsilon_1, \mathsf{V}^\varepsilon_2) $. The random strings $ t_1 $, $ t_2 $, $ t_3 $, $ u_1 $ and $ u_2 $ are omitted
[1]

Jintai Ding, Sihem Mesnager, Lih-Chung Wang. Letters for post-quantum cryptography standard evaluation. Advances in Mathematics of Communications, 2020, 14 (1) : i-i. doi: 10.3934/amc.2020012

[2]

Florian Luca, Igor E. Shparlinski. On finite fields for pairing based cryptography. Advances in Mathematics of Communications, 2007, 1 (3) : 281-286. doi: 10.3934/amc.2007.1.281

[3]

Gérard Maze, Chris Monico, Joachim Rosenthal. Public key cryptography based on semigroup actions. Advances in Mathematics of Communications, 2007, 1 (4) : 489-507. doi: 10.3934/amc.2007.1.489

[4]

Lidong Chen, Dustin Moody. New mission and opportunity for mathematics researchers: Cryptography in the quantum era. Advances in Mathematics of Communications, 2020, 14 (1) : 161-169. doi: 10.3934/amc.2020013

[5]

Diego F. Aranha, Ricardo Dahab, Julio López, Leonardo B. Oliveira. Efficient implementation of elliptic curve cryptography in wireless sensors. Advances in Mathematics of Communications, 2010, 4 (2) : 169-187. doi: 10.3934/amc.2010.4.169

[6]

Andreas Klein. How to say yes, no and maybe with visual cryptography. Advances in Mathematics of Communications, 2008, 2 (3) : 249-259. doi: 10.3934/amc.2008.2.249

[7]

Gerhard Frey. Relations between arithmetic geometry and public key cryptography. Advances in Mathematics of Communications, 2010, 4 (2) : 281-305. doi: 10.3934/amc.2010.4.281

[8]

Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517

[9]

Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic & Related Models, 2016, 9 (1) : 165-191. doi: 10.3934/krm.2016.9.165

[10]

Seok-Jin Kang and Jae-Hoon Kwon. Quantum affine algebras, combinatorics of Young walls, and global bases. Electronic Research Announcements, 2002, 8: 35-46.

[11]

Rod Cross, Hugh McNamara, Leonid Kalachev, Alexei Pokrovskii. Hysteresis and post Walrasian economics. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 377-401. doi: 10.3934/dcdsb.2013.18.377

[12]

Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5377-5407. doi: 10.3934/dcdsb.2019063

[13]

Chien-Wen Chao, Shu-Cherng Fang, Ching-Jong Liao. A tropical cyclone-based method for global optimization. Journal of Industrial & Management Optimization, 2012, 8 (1) : 103-115. doi: 10.3934/jimo.2012.8.103

[14]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[15]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[16]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[17]

Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133

[18]

Kui Lin, Shuai Lu, Peter Mathé. Oracle-type posterior contraction rates in Bayesian inverse problems. Inverse Problems & Imaging, 2015, 9 (3) : 895-915. doi: 10.3934/ipi.2015.9.895

[19]

Tom Goldstein, Xavier Bresson, Stan Osher. Global minimization of Markov random fields with applications to optical flow. Inverse Problems & Imaging, 2012, 6 (4) : 623-644. doi: 10.3934/ipi.2012.6.623

[20]

Masha Shunko, Srinagesh Gavirneni. Role of transfer prices in global supply chains with random demands. Journal of Industrial & Management Optimization, 2007, 3 (1) : 99-117. doi: 10.3934/jimo.2007.3.99

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (11)
  • HTML views (24)
  • Cited by (0)

Other articles
by authors

[Back to Top]