[1]
|
M. Barbier, C. Chabot and G. Quintin, On quasi-cyclic codes as a generalization of cyclic codes, Finite Fields and Their Applications, 18 (2012), 904-919.
doi: 10.1016/j.ffa.2012.06.003.
|
[2]
|
R. Barbulescu, C. Bouvier, J. Detrey, P. Gaudry, H. Jeljeli, E. Thomé, M. Videau and P. Zimmermann, Discrete logarithm in $GF(2^{809})$ with FFS, PKC 2014: Public-Key Cryptography-PKC 2014, (2014), 221–238, http://dx.doi.org/10.1007/978-3-642-54631-0_13.
doi: 10.1007/978-3-642-54631-0.
|
[3]
|
M. Blaum, J. Brady, J. Bruck and J. Menon, EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures, IEEE Transactions on Computers, 44 (1995), 192-202.
doi: 10.1109/12.364531.
|
[4]
|
M. Blaum and J. Bruck, Decoding the Golay code with Venn diagrams, IEEE Transactions on Information Theory, 36 (1990), 906-910.
doi: 10.1109/18.53756.
|
[5]
|
M. Blaum, J. Bruck and A. Vardy, MDS array codes with independent parity symbols, IEEE Transactions on Information Theory, 42 (1995), 529-542.
doi: 10.1109/ISIT.1995.535761.
|
[6]
|
M. Blaum, P. G. Farrell and H. C. A. van Tilborg, Array codes, in Handbook of Coding Theory, North-Holland, Amsterdam, 1/2 (1998), 1855–1909.
|
[7]
|
M. Blaum and R. M. Roth, New array codes for multiple phased burst correction, IEEE Transactions on Information Theory, 39 (1993), 66-77.
doi: 10.1109/18.179343.
|
[8]
|
M. Blaum and R. M. Roth, On lowest density MDS codes, IEEE Transactions on Information Theory, 45 (1999), 46-59.
doi: 10.1109/18.746771.
|
[9]
|
S. D. Cardell, Constructions of MDS Codes over Extension Alphabets, PhD thesis, Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante, Alicante, España, 2012.
|
[10]
|
S. D. Cardell, J.-J. Climent and V. Requena, A construction of MDS array codes, WIT Transactions on Information and Communication Technologies, 45 (2013), 47-58.
doi: 10.2495/DATA130051.
|
[11]
|
S. D. Cardell and A. Fúster-Sabater, Recovering decimation-based cryptographic sequences by means of linear CAs, (2018), https://arXiv.org/abs/1802.02206.
|
[12]
|
G. A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage, Cambridge, MA: MIT Press, 1992.
|
[13]
|
K. Huber, Some comments on Zech's logarithms, IEEE Transactions on Information Theory, 36 (1990), 946-950.
doi: 10.1109/18.53764.
|
[14]
|
A. Kotzig, Hamilton graphs and Hamilton circuits, Theory of Graphs and its Applications, Publ. House Czechoslovak Acad. Sci., Prague, (1964), 63–82.
|
[15]
|
E. Louidor and R. M. Roth, Lowest density MDS codes over extension alphabets, IEEE Transactions on Information Theory, 52 (2006), 3186-3197.
doi: 10.1109/TIT.2006.876235.
|
[16]
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
|
[17]
|
E. Mendelsohn and A. Rosa, One-factorizations of the complete graph-A survey, Journal of Graph Theory, 9 (1985), 43-65.
doi: 10.1002/jgt.3190090104.
|
[18]
|
M. Sudan, Algorithmic Introduction to Coding Theory, 2002, https://people.csail.mit.edu/madhu/FT02/scribe/lect16.ps.
|
[19]
|
L. H. Xu and J. Bruck, X-code: MDS array codes with optimal encoding, IEEE Transactions on Information Theory, 45 (1999), 272-276.
doi: 10.1109/18.746809.
|
[20]
|
G. V. Zaitzev, V. A. Zinov'ev and N. V. Semakov, Minimum-check-density codes for correcting bytes of errors, erasures, or defects, Problems of Information Transmission, 19 (1983), 197-204.
|