-
Previous Article
On polycyclic codes over a finite chain ring
- AMC Home
- This Issue
-
Next Article
On the non-Abelian group code capacity of memoryless channels
A construction of $ \mathbb{F}_2 $-linear cyclic, MDS codes
1. | Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Campinas, Brazil |
2. | Departament de Matemàtiques, Universitat d'Alacant, Alacant, Spain |
3. | School of Mathematics and Statistics, Carleton University, Ottawa, Canada |
In this paper we construct $ \mathbb{F}_2 $-linear codes over $ \mathbb{F}_{2}^{b} $ with length $ n $ and dimension $ n-r $ where $ n = rb $. These codes have good properties, namely cyclicity, low density parity-check matrices and maximum distance separation in some cases. For the construction, we consider an odd prime $ p $, let $ n = p-1 $ and utilize a partition of $ \mathbb{Z}_n $. Then we apply a Zech logarithm to the elements of these sets and use the results to construct an index array which represents the parity-check matrix of the code. These codes are always cyclic and the density of the parity-check and the generator matrices decreases to $ 0 $ as $ n $ grows (for a fixed $ r $). When $ r = 2 $ we prove that these codes are always maximum distance separable. For higher $ r $ some of them retain this property.
References:
[1] |
M. Barbier, C. Chabot and G. Quintin,
On quasi-cyclic codes as a generalization of cyclic codes, Finite Fields and Their Applications, 18 (2012), 904-919.
doi: 10.1016/j.ffa.2012.06.003. |
[2] |
R. Barbulescu, C. Bouvier, J. Detrey, P. Gaudry, H. Jeljeli, E. Thomé, M. Videau and P. Zimmermann, Discrete logarithm in $GF(2^{809})$ with FFS, PKC 2014: Public-Key Cryptography-PKC 2014, (2014), 221–238, http://dx.doi.org/10.1007/978-3-642-54631-0_13.
doi: 10.1007/978-3-642-54631-0. |
[3] |
M. Blaum, J. Brady, J. Bruck and J. Menon,
EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures, IEEE Transactions on Computers, 44 (1995), 192-202.
doi: 10.1109/12.364531. |
[4] |
M. Blaum and J. Bruck,
Decoding the Golay code with Venn diagrams, IEEE Transactions on Information Theory, 36 (1990), 906-910.
doi: 10.1109/18.53756. |
[5] |
M. Blaum, J. Bruck and A. Vardy,
MDS array codes with independent parity symbols, IEEE Transactions on Information Theory, 42 (1995), 529-542.
doi: 10.1109/ISIT.1995.535761. |
[6] |
M. Blaum, P. G. Farrell and H. C. A. van Tilborg, Array codes, in Handbook of Coding Theory, North-Holland, Amsterdam, 1/2 (1998), 1855–1909. |
[7] |
M. Blaum and R. M. Roth,
New array codes for multiple phased burst correction, IEEE Transactions on Information Theory, 39 (1993), 66-77.
doi: 10.1109/18.179343. |
[8] |
M. Blaum and R. M. Roth,
On lowest density MDS codes, IEEE Transactions on Information Theory, 45 (1999), 46-59.
doi: 10.1109/18.746771. |
[9] |
S. D. Cardell, Constructions of MDS Codes over Extension Alphabets, PhD thesis, Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante, Alicante, España, 2012. |
[10] |
S. D. Cardell, J.-J. Climent and V. Requena,
A construction of MDS array codes, WIT Transactions on Information and Communication Technologies, 45 (2013), 47-58.
doi: 10.2495/DATA130051. |
[11] |
S. D. Cardell and A. Fúster-Sabater, Recovering decimation-based cryptographic sequences by means of linear CAs, (2018), https://arXiv.org/abs/1802.02206. |
[12] |
G. A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage, Cambridge, MA: MIT Press, 1992.
![]() |
[13] |
K. Huber,
Some comments on Zech's logarithms, IEEE Transactions on Information Theory, 36 (1990), 946-950.
doi: 10.1109/18.53764. |
[14] |
A. Kotzig, Hamilton graphs and Hamilton circuits, Theory of Graphs and its Applications, Publ. House Czechoslovak Acad. Sci., Prague, (1964), 63–82. |
[15] |
E. Louidor and R. M. Roth,
Lowest density MDS codes over extension alphabets, IEEE Transactions on Information Theory, 52 (2006), 3186-3197.
doi: 10.1109/TIT.2006.876235. |
[16] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[17] |
E. Mendelsohn and A. Rosa,
One-factorizations of the complete graph-A survey, Journal of Graph Theory, 9 (1985), 43-65.
doi: 10.1002/jgt.3190090104. |
[18] |
M. Sudan, Algorithmic Introduction to Coding Theory, 2002, https://people.csail.mit.edu/madhu/FT02/scribe/lect16.ps. |
[19] |
L. H. Xu and J. Bruck,
X-code: MDS array codes with optimal encoding, IEEE Transactions on Information Theory, 45 (1999), 272-276.
doi: 10.1109/18.746809. |
[20] |
G. V. Zaitzev, V. A. Zinov'ev and N. V. Semakov,
Minimum-check-density codes for correcting bytes of errors, erasures, or defects, Problems of Information Transmission, 19 (1983), 197-204.
|
show all references
References:
[1] |
M. Barbier, C. Chabot and G. Quintin,
On quasi-cyclic codes as a generalization of cyclic codes, Finite Fields and Their Applications, 18 (2012), 904-919.
doi: 10.1016/j.ffa.2012.06.003. |
[2] |
R. Barbulescu, C. Bouvier, J. Detrey, P. Gaudry, H. Jeljeli, E. Thomé, M. Videau and P. Zimmermann, Discrete logarithm in $GF(2^{809})$ with FFS, PKC 2014: Public-Key Cryptography-PKC 2014, (2014), 221–238, http://dx.doi.org/10.1007/978-3-642-54631-0_13.
doi: 10.1007/978-3-642-54631-0. |
[3] |
M. Blaum, J. Brady, J. Bruck and J. Menon,
EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures, IEEE Transactions on Computers, 44 (1995), 192-202.
doi: 10.1109/12.364531. |
[4] |
M. Blaum and J. Bruck,
Decoding the Golay code with Venn diagrams, IEEE Transactions on Information Theory, 36 (1990), 906-910.
doi: 10.1109/18.53756. |
[5] |
M. Blaum, J. Bruck and A. Vardy,
MDS array codes with independent parity symbols, IEEE Transactions on Information Theory, 42 (1995), 529-542.
doi: 10.1109/ISIT.1995.535761. |
[6] |
M. Blaum, P. G. Farrell and H. C. A. van Tilborg, Array codes, in Handbook of Coding Theory, North-Holland, Amsterdam, 1/2 (1998), 1855–1909. |
[7] |
M. Blaum and R. M. Roth,
New array codes for multiple phased burst correction, IEEE Transactions on Information Theory, 39 (1993), 66-77.
doi: 10.1109/18.179343. |
[8] |
M. Blaum and R. M. Roth,
On lowest density MDS codes, IEEE Transactions on Information Theory, 45 (1999), 46-59.
doi: 10.1109/18.746771. |
[9] |
S. D. Cardell, Constructions of MDS Codes over Extension Alphabets, PhD thesis, Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante, Alicante, España, 2012. |
[10] |
S. D. Cardell, J.-J. Climent and V. Requena,
A construction of MDS array codes, WIT Transactions on Information and Communication Technologies, 45 (2013), 47-58.
doi: 10.2495/DATA130051. |
[11] |
S. D. Cardell and A. Fúster-Sabater, Recovering decimation-based cryptographic sequences by means of linear CAs, (2018), https://arXiv.org/abs/1802.02206. |
[12] |
G. A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage, Cambridge, MA: MIT Press, 1992.
![]() |
[13] |
K. Huber,
Some comments on Zech's logarithms, IEEE Transactions on Information Theory, 36 (1990), 946-950.
doi: 10.1109/18.53764. |
[14] |
A. Kotzig, Hamilton graphs and Hamilton circuits, Theory of Graphs and its Applications, Publ. House Czechoslovak Acad. Sci., Prague, (1964), 63–82. |
[15] |
E. Louidor and R. M. Roth,
Lowest density MDS codes over extension alphabets, IEEE Transactions on Information Theory, 52 (2006), 3186-3197.
doi: 10.1109/TIT.2006.876235. |
[16] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[17] |
E. Mendelsohn and A. Rosa,
One-factorizations of the complete graph-A survey, Journal of Graph Theory, 9 (1985), 43-65.
doi: 10.1002/jgt.3190090104. |
[18] |
M. Sudan, Algorithmic Introduction to Coding Theory, 2002, https://people.csail.mit.edu/madhu/FT02/scribe/lect16.ps. |
[19] |
L. H. Xu and J. Bruck,
X-code: MDS array codes with optimal encoding, IEEE Transactions on Information Theory, 45 (1999), 272-276.
doi: 10.1109/18.746809. |
[20] |
G. V. Zaitzev, V. A. Zinov'ev and N. V. Semakov,
Minimum-check-density codes for correcting bytes of errors, erasures, or defects, Problems of Information Transmission, 19 (1983), 197-204.
|
5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | ||
2 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |
3 | × | √ | √ | √ | √ | √ | |||||||
4 | × | × | √ | √ | × | ||||||||
5 | × | × | × | ||||||||||
6 | × | × | × | × | × | ||||||||
7 | × | × | |||||||||||
8 | × | × | |||||||||||
9 | × | × | |||||||||||
10 | × | × | |||||||||||
11 | × | ||||||||||||
12 | × | ||||||||||||
13 | |||||||||||||
14 | × | × | |||||||||||
15 | × |
5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | ||
2 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |
3 | × | √ | √ | √ | √ | √ | |||||||
4 | × | × | √ | √ | × | ||||||||
5 | × | × | × | ||||||||||
6 | × | × | × | × | × | ||||||||
7 | × | × | |||||||||||
8 | × | × | |||||||||||
9 | × | × | |||||||||||
10 | × | × | |||||||||||
11 | × | ||||||||||||
12 | × | ||||||||||||
13 | |||||||||||||
14 | × | × | |||||||||||
15 | × |
[1] |
Emily McMillon, Allison Beemer, Christine A. Kelley. Extremal absorbing sets in low-density parity-check codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021003 |
[2] |
Thomas Westerbäck. Parity check systems of nonlinear codes over finite commutative Frobenius rings. Advances in Mathematics of Communications, 2017, 11 (3) : 409-427. doi: 10.3934/amc.2017035 |
[3] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[4] |
Anna-Lena Horlemann-Trautmann, Alessandro Neri. A complete classification of partial MDS (maximally recoverable) codes with one global parity. Advances in Mathematics of Communications, 2020, 14 (1) : 69-88. doi: 10.3934/amc.2020006 |
[5] |
W. Cary Huffman. Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order. Advances in Mathematics of Communications, 2013, 7 (1) : 57-90. doi: 10.3934/amc.2013.7.57 |
[6] |
Yun Gao, Shilin Yang, Fang-Wei Fu. Some optimal cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^t} $-codes. Advances in Mathematics of Communications, 2021, 15 (3) : 387-396. doi: 10.3934/amc.2020072 |
[7] |
Adrian Korban, Serap Sahinkaya, Deniz Ustun. New type I binary $[72, 36, 12]$ self-dual codes from $M_6(\mathbb{F}_2)G$ - Group matrix rings by a hybrid search technique based on a neighbourhood-virus optimisation algorithm. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022032 |
[8] |
Karim Samei, Arezoo Soufi. Quadratic residue codes over $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$. Advances in Mathematics of Communications, 2017, 11 (4) : 791-804. doi: 10.3934/amc.2017058 |
[9] |
Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040 |
[10] |
Roghayeh Mohammadi Hesari, Mahboubeh Hosseinabadi, Rashid Rezaei, Karim Samei. $\mathbb{F}_{p^{m}}\mathbb{F}_{p^{m}}{[u^2]}$-additive skew cyclic codes of length $2p^s $. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022023 |
[11] |
Taher Abualrub, Steven T. Dougherty. Additive and linear conjucyclic codes over $ {\mathbb{F}}_4 $. Advances in Mathematics of Communications, 2022, 16 (1) : 1-15. doi: 10.3934/amc.2020096 |
[12] |
Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049 |
[13] |
Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027 |
[14] |
Fatmanur Gursoy, Irfan Siap, Bahattin Yildiz. Construction of skew cyclic codes over $\mathbb F_q+v\mathbb F_q$. Advances in Mathematics of Communications, 2014, 8 (3) : 313-322. doi: 10.3934/amc.2014.8.313 |
[15] |
Wei Qi. On the polycyclic codes over $ \mathbb{F}_q+u\mathbb{F}_q $. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022015 |
[16] |
Minjia Shi, Yaqi Lu. Cyclic DNA codes over $ \mathbb{F}_2[u,v]/\langle u^3, v^2-v, vu-uv\rangle$. Advances in Mathematics of Communications, 2019, 13 (1) : 157-164. doi: 10.3934/amc.2019009 |
[17] |
Evangeline P. Bautista, Philippe Gaborit, Jon-Lark Kim, Judy L. Walker. s-extremal additive $\mathbb F_4$ codes. Advances in Mathematics of Communications, 2007, 1 (1) : 111-130. doi: 10.3934/amc.2007.1.111 |
[18] |
Olof Heden, Faina I. Solov’eva. Partitions of $\mathbb F$n into non-parallel Hamming codes. Advances in Mathematics of Communications, 2009, 3 (4) : 385-397. doi: 10.3934/amc.2009.3.385 |
[19] |
W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2008, 2 (3) : 309-343. doi: 10.3934/amc.2008.2.309 |
[20] |
W. Cary Huffman. Additive cyclic codes over $\mathbb F_4$. Advances in Mathematics of Communications, 2007, 1 (4) : 427-459. doi: 10.3934/amc.2007.1.427 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]