doi: 10.3934/amc.2020049

The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes

1. 

School of Mathematics and Statistics, Zaozhuang University, Zaozhuang, Shandong, 277160, China

2. 

State Key Laboratory of Cryptology, P. O. Box 5159, Beijing, 100878, China

3. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211100, China

Received  September 2018 Revised  November 2019 Published  January 2020

Fund Project: The paper was supported by National Natural Science Foundation of China under Grants 11601475, 61772015, the foundation of Science and Technology on Information Assurance Labo- ratory under Grant KJ-17-010, china, and the foundation of innovative Science and technology for youth in universities of Shandong Province China under Grant 2019KJI001.

Let
$ l $
be a prime with
$ l\equiv 3\pmod 4 $
and
$ l\ne 3 $
,
$ N = l^m $
for
$ m $
a positive integer,
$ f = \phi(N)/2 $
the multiplicative order of a prime
$ p $
modulo
$ N $
, and
$ q = p^f $
, where
$ \phi(\cdot) $
is the Euler-function. Let
$ \alpha $
be a primitive element of a finite field
$ \Bbb F_{q} $
,
$ C_0^{(N,q)} = \langle \alpha^N\rangle $
a cyclic subgroup of the multiplicative group
$ \Bbb F_q^* $
, and
$ C_i^{(N,q)} = \alpha^i\langle \alpha^N\rangle $
the cosets,
$ i = 0,\ldots, N-1 $
. In this paper, we use Gaussian sums to obtain the explicit values of
$ \eta_i^{(N, q)} = \sum_{x \in C_i^{(N,q)}}\psi(x) $
,
$ i = 0,1,\cdots, N-1 $
, where
$ \psi $
is the canonical additive character of
$ \Bbb F_{q} $
. Moreover, we also compute the explicit values of
$ \eta_i^{(2N, q)} $
,
$ i = 0,1,\cdots, 2N-1 $
, if
$ q $
is a power of an odd prime
$ p $
.
As an application, we investigate the weight distribution of a
$ p $
-ary linear code:
$ \mathcal{C}_{D} = \{C = ( \operatorname{Tr}_{q/p}(c x_1), \operatorname{Tr}_{q/p}(cx_2),\ldots, \operatorname{Tr}_{q/p}(cx_n)):c\in \Bbb{F}_{q}\}, $
where its defining set
$ D $
is given by
$ D = \{x\in \Bbb{F}_{q}^{*}: \operatorname{Tr}_{q/p}(x^{\frac{q-1}{l^{m}}}) = 0\} $
and
$ \operatorname{Tr}_{q/p} $
denotes the trace function from
$ \Bbb F_{q} $
to
$ \Bbb F_p $
.
Citation: Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2020049
References:
[1]

L. Baumert and J. Mykkeltveit, Weight distributions of some irreducible cyclic codes, DSN Progr. Rep., 16 (1973), 128-131.   Google Scholar

[2]

B. Berndt, R. Evans and K. Williams, Gauss and Jacobi Sums, New York, John Wiley & Sons Company, 1997. Google Scholar

[3]

H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138. Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-662-02945-9.  Google Scholar

[4]

C. S. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., 313 (2013), 434-446.  doi: 10.1016/j.disc.2012.11.009.  Google Scholar

[5]

C. S. DingY. LiuC. L. Ma and L. W. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inform. Theory, 57 (2011), 8000-8006.  doi: 10.1109/TIT.2011.2165314.  Google Scholar

[6]

C. S. DingC. L. LiN. Li and Z. C. Zhou, Three-weight cyclic codes and their weight distributions, Discrete Math., 339 (2016), 415-427.  doi: 10.1016/j.disc.2015.09.001.  Google Scholar

[7]

T. Feng and Q. Xiang, Strongly regular graphs from unions of cyclotomic classes, Journal of Combinatorial Theory Series B, 102 (2012), 982-995.  doi: 10.1016/j.jctb.2011.10.006.  Google Scholar

[8]

Z. L. Heng and Q. Yue, A class of binary linear codes with at most three weights, IEEE Commun. Lett., 19 (2015), 1488-1491.  doi: 10.1109/LCOMM.2015.2455032.  Google Scholar

[9]

Z. L. Heng and Q. Yue, Two classes of two-weight linear codes, Finite Fields Appl., 38 (2016), 72-92.  doi: 10.1016/j.ffa.2015.12.002.  Google Scholar

[10]

Z. L. Heng and Q. Yue, Evaluation of the Hamming weights of a class of linear codes based on Gauss sums, Des. Codes Cryptogr., 83 (2017), 307-326.  doi: 10.1007/s10623-016-0222-7.  Google Scholar

[11]

L. Q. HuQ. Yue and M. H. Wang, The linear complexity of Whiteman's generalize cyclotomic sequences of period $p^{m+1}q^{n+1}$, IEEE Trans. Inform. Theory, 58 (2012), 5534-5543.  doi: 10.1109/TIT.2012.2196254.  Google Scholar

[12]

P. Langevin, Caluls de certaines sommes de Gauss, J. Number theory, 63 (1997), 59-64.  doi: 10.1006/jnth.1997.2078.  Google Scholar

[13]

C. J. Li and Q. Yue, The Walsh transform of a class of monomial functions and cyclic codes, Cryptogr. Commun., 7 (2015), 217-228.  doi: 10.1007/s12095-014-0109-2.  Google Scholar

[14]

C. J. LiQ. Yue and F. W. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114.  doi: 10.1016/j.ffa.2014.01.009.  Google Scholar

[15]

F. W. LiQ. Yue and F. M. Liu, The weight distribution of a class of cyclic codes containing a subclass with optimal parameters, Finite Fields Appl., 45 (2017), 183-202.  doi: 10.1016/j.ffa.2016.12.004.  Google Scholar

[16]

R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.  Google Scholar

[17]

Y. W. Liu and Z. H. Liu, On some classes of codes with a few weights, Adv. Math. Commun., 12 (2018), 415-428.  doi: 10.3934/amc.2018025.  Google Scholar

[18]

J. Q. Luo and K. Q. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.  doi: 10.1109/TIT.2008.2006424.  Google Scholar

[19]

G. McGuire, On three weights in cyclic codes with two zeros, Finite Fields Appl., 10 (2004), 97-104.  doi: 10.1016/S1071-5797(03)00045-5.  Google Scholar

[20]

G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., 39 (1981), 251-264.  doi: 10.4064/aa-39-3-251-264.  Google Scholar

[21]

T. Storer, Cyclotomy and Difference Sets, Lectures in Advanced Mathematics, No. 2 Markham Publishing Co., Chicago, Ill. 1967.  Google Scholar

[22]

Q. Y. WangK. L. DingD. D. Lin and R. Xue, A kind of three-weight linear codes, Cryptogr. Commun., 9 (2017), 315-322.  doi: 10.1007/s12095-015-0180-3.  Google Scholar

[23]

Q. Y. WangK. L. Ding and R. Xue, Binary linear codes with two weights, IEEE Commun. Lett., 19 (2015), 1097-1100.  doi: 10.1109/LCOMM.2015.2431253.  Google Scholar

[24]

X. Q. WangD. B. ZhengL. Hu and X. Y. Zeng, The weight distributions of two classes of binary cyclic codes, Finite Fields Appl., 34 (2015), 192-207.  doi: 10.1016/j.ffa.2015.01.012.  Google Scholar

[25]

M. S. Xiong, The weight distributions of a class of cyclic codes, Finite Fields Appl., 18 (2012), 933-945.  doi: 10.1016/j.ffa.2012.06.001.  Google Scholar

[26]

J. Yang and L. L. Xia, Complete solving of explicit evaluation of Gauss sums in the index 2 case, Sci. China Math., 53 (2010), 2525-2542.  doi: 10.1007/s11425-010-3155-z.  Google Scholar

[27]

J. YangM. S. XiongC. S. Ding and J. Q. Luo, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inform. Theory, 59 (2013), 5985-5993.  doi: 10.1109/TIT.2013.2266731.  Google Scholar

[28]

S. D. YangX. L. Kong and C. M. Tang, A construction of linear codes and their complete weight enumerators, Finite Fields Appl., 48 (2017), 196-226.  doi: 10.1016/j.ffa.2017.08.001.  Google Scholar

[29]

S. D. Yang and Z.-A. Yao, Complete weight enumerators of a class of linear codes, Discrete Math., 340 (2017), 729-739.  doi: 10.1016/j.disc.2016.11.029.  Google Scholar

[30]

Z. C. Zhou and C. S. Ding, A class of three-weight cyclic codes, Finite Fields Appli., 25 (2014), 79-93.  doi: 10.1016/j.ffa.2013.08.005.  Google Scholar

[31]

Z. C. ZhouA. X. Zhang and C. S. Ding, The weight enumerator of three families of cyclic codes, IEEE Trans. Inf. Theory, 59 (2013), 6002-6009.  doi: 10.1109/TIT.2013.2262095.  Google Scholar

show all references

References:
[1]

L. Baumert and J. Mykkeltveit, Weight distributions of some irreducible cyclic codes, DSN Progr. Rep., 16 (1973), 128-131.   Google Scholar

[2]

B. Berndt, R. Evans and K. Williams, Gauss and Jacobi Sums, New York, John Wiley & Sons Company, 1997. Google Scholar

[3]

H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138. Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-662-02945-9.  Google Scholar

[4]

C. S. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., 313 (2013), 434-446.  doi: 10.1016/j.disc.2012.11.009.  Google Scholar

[5]

C. S. DingY. LiuC. L. Ma and L. W. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inform. Theory, 57 (2011), 8000-8006.  doi: 10.1109/TIT.2011.2165314.  Google Scholar

[6]

C. S. DingC. L. LiN. Li and Z. C. Zhou, Three-weight cyclic codes and their weight distributions, Discrete Math., 339 (2016), 415-427.  doi: 10.1016/j.disc.2015.09.001.  Google Scholar

[7]

T. Feng and Q. Xiang, Strongly regular graphs from unions of cyclotomic classes, Journal of Combinatorial Theory Series B, 102 (2012), 982-995.  doi: 10.1016/j.jctb.2011.10.006.  Google Scholar

[8]

Z. L. Heng and Q. Yue, A class of binary linear codes with at most three weights, IEEE Commun. Lett., 19 (2015), 1488-1491.  doi: 10.1109/LCOMM.2015.2455032.  Google Scholar

[9]

Z. L. Heng and Q. Yue, Two classes of two-weight linear codes, Finite Fields Appl., 38 (2016), 72-92.  doi: 10.1016/j.ffa.2015.12.002.  Google Scholar

[10]

Z. L. Heng and Q. Yue, Evaluation of the Hamming weights of a class of linear codes based on Gauss sums, Des. Codes Cryptogr., 83 (2017), 307-326.  doi: 10.1007/s10623-016-0222-7.  Google Scholar

[11]

L. Q. HuQ. Yue and M. H. Wang, The linear complexity of Whiteman's generalize cyclotomic sequences of period $p^{m+1}q^{n+1}$, IEEE Trans. Inform. Theory, 58 (2012), 5534-5543.  doi: 10.1109/TIT.2012.2196254.  Google Scholar

[12]

P. Langevin, Caluls de certaines sommes de Gauss, J. Number theory, 63 (1997), 59-64.  doi: 10.1006/jnth.1997.2078.  Google Scholar

[13]

C. J. Li and Q. Yue, The Walsh transform of a class of monomial functions and cyclic codes, Cryptogr. Commun., 7 (2015), 217-228.  doi: 10.1007/s12095-014-0109-2.  Google Scholar

[14]

C. J. LiQ. Yue and F. W. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114.  doi: 10.1016/j.ffa.2014.01.009.  Google Scholar

[15]

F. W. LiQ. Yue and F. M. Liu, The weight distribution of a class of cyclic codes containing a subclass with optimal parameters, Finite Fields Appl., 45 (2017), 183-202.  doi: 10.1016/j.ffa.2016.12.004.  Google Scholar

[16]

R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.  Google Scholar

[17]

Y. W. Liu and Z. H. Liu, On some classes of codes with a few weights, Adv. Math. Commun., 12 (2018), 415-428.  doi: 10.3934/amc.2018025.  Google Scholar

[18]

J. Q. Luo and K. Q. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.  doi: 10.1109/TIT.2008.2006424.  Google Scholar

[19]

G. McGuire, On three weights in cyclic codes with two zeros, Finite Fields Appl., 10 (2004), 97-104.  doi: 10.1016/S1071-5797(03)00045-5.  Google Scholar

[20]

G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., 39 (1981), 251-264.  doi: 10.4064/aa-39-3-251-264.  Google Scholar

[21]

T. Storer, Cyclotomy and Difference Sets, Lectures in Advanced Mathematics, No. 2 Markham Publishing Co., Chicago, Ill. 1967.  Google Scholar

[22]

Q. Y. WangK. L. DingD. D. Lin and R. Xue, A kind of three-weight linear codes, Cryptogr. Commun., 9 (2017), 315-322.  doi: 10.1007/s12095-015-0180-3.  Google Scholar

[23]

Q. Y. WangK. L. Ding and R. Xue, Binary linear codes with two weights, IEEE Commun. Lett., 19 (2015), 1097-1100.  doi: 10.1109/LCOMM.2015.2431253.  Google Scholar

[24]

X. Q. WangD. B. ZhengL. Hu and X. Y. Zeng, The weight distributions of two classes of binary cyclic codes, Finite Fields Appl., 34 (2015), 192-207.  doi: 10.1016/j.ffa.2015.01.012.  Google Scholar

[25]

M. S. Xiong, The weight distributions of a class of cyclic codes, Finite Fields Appl., 18 (2012), 933-945.  doi: 10.1016/j.ffa.2012.06.001.  Google Scholar

[26]

J. Yang and L. L. Xia, Complete solving of explicit evaluation of Gauss sums in the index 2 case, Sci. China Math., 53 (2010), 2525-2542.  doi: 10.1007/s11425-010-3155-z.  Google Scholar

[27]

J. YangM. S. XiongC. S. Ding and J. Q. Luo, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inform. Theory, 59 (2013), 5985-5993.  doi: 10.1109/TIT.2013.2266731.  Google Scholar

[28]

S. D. YangX. L. Kong and C. M. Tang, A construction of linear codes and their complete weight enumerators, Finite Fields Appl., 48 (2017), 196-226.  doi: 10.1016/j.ffa.2017.08.001.  Google Scholar

[29]

S. D. Yang and Z.-A. Yao, Complete weight enumerators of a class of linear codes, Discrete Math., 340 (2017), 729-739.  doi: 10.1016/j.disc.2016.11.029.  Google Scholar

[30]

Z. C. Zhou and C. S. Ding, A class of three-weight cyclic codes, Finite Fields Appli., 25 (2014), 79-93.  doi: 10.1016/j.ffa.2013.08.005.  Google Scholar

[31]

Z. C. ZhouA. X. Zhang and C. S. Ding, The weight enumerator of three families of cyclic codes, IEEE Trans. Inf. Theory, 59 (2013), 6002-6009.  doi: 10.1109/TIT.2013.2262095.  Google Scholar

Table 1.  Weight distribution of the code in Theorem 5.2
Weight Frequency
0 1
$\frac{p-1}p(q-\frac{q-1}{l^{m-1}}+\eta_0^{(l^{m-1},q)})$ $\frac{q-1}{l^{m-1}}$
$\frac{p-1}p(q-\frac{q-1}{l^{m-1}}+\eta_i^{(l^{m-1},q)}),i = l^{m-1-k}u, u\in H_k^{(0)}$ $\frac{q-1}{l^{m-1}}\cdot\frac{\phi(l^k)}2$
$\frac{p-1}p(q-\frac{q-1}{l^{m-1}}+\eta_{i'}^{(l^{m-1},q)}),i' = l^{m-1-k}u, u\in H_k^{(1)}$ $\frac{q-1}{l^{m-1}}\cdot\frac{\phi(l^k)}2$
$k = 1,2,\ldots, m-1$
Weight Frequency
0 1
$\frac{p-1}p(q-\frac{q-1}{l^{m-1}}+\eta_0^{(l^{m-1},q)})$ $\frac{q-1}{l^{m-1}}$
$\frac{p-1}p(q-\frac{q-1}{l^{m-1}}+\eta_i^{(l^{m-1},q)}),i = l^{m-1-k}u, u\in H_k^{(0)}$ $\frac{q-1}{l^{m-1}}\cdot\frac{\phi(l^k)}2$
$\frac{p-1}p(q-\frac{q-1}{l^{m-1}}+\eta_{i'}^{(l^{m-1},q)}),i' = l^{m-1-k}u, u\in H_k^{(1)}$ $\frac{q-1}{l^{m-1}}\cdot\frac{\phi(l^k)}2$
$k = 1,2,\ldots, m-1$
Table 2.  Weight distribution of the code in Theorem 5.3 $ (\frac{-1+\sqrt {-l}}2\equiv 0\pmod {\mathcal P_1})$
Weight Frequency
$0$ $1$
$\frac{(p-1)(2l^mq-(l+1)(q-1))}{2pl^m}+\frac{p-1}p\eta_{0}^{(l^m, q)}+\frac{(l-1)(p-1)}{2p}\eta_{i'}^{(l^m,q)}$ $\frac{q-1}{l^{m}}$
$i'/l^{m-1}\in H_1^{(1)}$
$\frac{(p-1)(2l^mq-(l+1)(q-1))}{2pl^m}+\frac{p-1}p\eta_0^{(l^m, q)}+\frac{(l+1)(p-1)}{4p}\eta_{i}^{(l^m, q)}+\frac{(l-3)(p-1)}{4p}\eta_{i'}^{(l^m,q)}$ $\frac{q-1}{l^{m}}\cdot\frac{l-1}2$
$ i/l^{{m-1}}\in H_1^{(0)}, i'/l^{m-1}\in H_1^{(1)}$
$\frac{(p-1)(2l^mq-(l+1)(q-1))}{2pl^m}+\frac{(l+1)(p-1)}{4p}\eta_{i}^{(l^m, q)}+\frac{(l+1)(p-1)}{4p}\eta_{i'}^{(l^m,q)}$ $\frac{q-1}{l^{m}}\cdot\frac{l-1}2$
$i/l^{{m-1}}\in H_1^{(0)}, i'/l^{m-1}\in H_1^{(1)}$
$\frac{(p-1)(2l^mq-(l+1)(q-1))}{2pl^m}+\frac{(p-1)(l+1)}{2p}\eta_{i}^{(l^m, q)},i\in \cup_{k = 2}^m S_k$ $\frac{q-1}{l^{m}}\phi(l^k)$,
$ k = 2,3,\ldots,m$,
Weight Frequency
$0$ $1$
$\frac{(p-1)(2l^mq-(l+1)(q-1))}{2pl^m}+\frac{p-1}p\eta_{0}^{(l^m, q)}+\frac{(l-1)(p-1)}{2p}\eta_{i'}^{(l^m,q)}$ $\frac{q-1}{l^{m}}$
$i'/l^{m-1}\in H_1^{(1)}$
$\frac{(p-1)(2l^mq-(l+1)(q-1))}{2pl^m}+\frac{p-1}p\eta_0^{(l^m, q)}+\frac{(l+1)(p-1)}{4p}\eta_{i}^{(l^m, q)}+\frac{(l-3)(p-1)}{4p}\eta_{i'}^{(l^m,q)}$ $\frac{q-1}{l^{m}}\cdot\frac{l-1}2$
$ i/l^{{m-1}}\in H_1^{(0)}, i'/l^{m-1}\in H_1^{(1)}$
$\frac{(p-1)(2l^mq-(l+1)(q-1))}{2pl^m}+\frac{(l+1)(p-1)}{4p}\eta_{i}^{(l^m, q)}+\frac{(l+1)(p-1)}{4p}\eta_{i'}^{(l^m,q)}$ $\frac{q-1}{l^{m}}\cdot\frac{l-1}2$
$i/l^{{m-1}}\in H_1^{(0)}, i'/l^{m-1}\in H_1^{(1)}$
$\frac{(p-1)(2l^mq-(l+1)(q-1))}{2pl^m}+\frac{(p-1)(l+1)}{2p}\eta_{i}^{(l^m, q)},i\in \cup_{k = 2}^m S_k$ $\frac{q-1}{l^{m}}\phi(l^k)$,
$ k = 2,3,\ldots,m$,
[1]

René Henrion. Gradient estimates for Gaussian distribution functions: application to probabilistically constrained optimization problems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 655-668. doi: 10.3934/naco.2012.2.655

[2]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[3]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020025

[4]

Barbara Brandolini, Francesco Chiacchio, Cristina Trombetti. Hardy type inequalities and Gaussian measure. Communications on Pure & Applied Analysis, 2007, 6 (2) : 411-428. doi: 10.3934/cpaa.2007.6.411

[5]

Delio Mugnolo. Gaussian estimates for a heat equation on a network. Networks & Heterogeneous Media, 2007, 2 (1) : 55-79. doi: 10.3934/nhm.2007.2.55

[6]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[7]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[8]

Johnathan M. Bardsley. Gaussian Markov random field priors for inverse problems. Inverse Problems & Imaging, 2013, 7 (2) : 397-416. doi: 10.3934/ipi.2013.7.397

[9]

Andreas Asheim, Alfredo Deaño, Daan Huybrechs, Haiyong Wang. A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 883-901. doi: 10.3934/dcds.2014.34.883

[10]

Wenxiong Chen, Congming Li. Some new approaches in prescribing gaussian and salar curvature. Conference Publications, 1998, 1998 (Special) : 148-159. doi: 10.3934/proc.1998.1998.148

[11]

Luca Di Persio, Giacomo Ziglio. Gaussian estimates on networks with applications to optimal control. Networks & Heterogeneous Media, 2011, 6 (2) : 279-296. doi: 10.3934/nhm.2011.6.279

[12]

Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems & Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051

[13]

Max-Olivier Hongler. Mean-field games and swarms dynamics in Gaussian and non-Gaussian environments. Journal of Dynamics & Games, 2020, 7 (1) : 1-20. doi: 10.3934/jdg.2020001

[14]

Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023

[15]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[16]

Gerardo Vega, Jesús E. Cuén-Ramos. The weight distribution of families of reducible cyclic codes through the weight distribution of some irreducible cyclic codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020059

[17]

Adriana Buică, Jaume Giné, Maite Grau. Essential perturbations of polynomial vector fields with a period annulus. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1073-1095. doi: 10.3934/cpaa.2015.14.1073

[18]

Victor J. W. Guo. A family of $ q $-congruences modulo the square of a cyclotomic polynomial. Electronic Research Archive, 2020, 28 (2) : 1031-1036. doi: 10.3934/era.2020055

[19]

Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381

[20]

Sanming Liu, Zhijie Wang, Chongyang Liu. Proximal iterative Gaussian smoothing algorithm for a class of nonsmooth convex minimization problems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 79-89. doi: 10.3934/naco.2015.5.79

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (43)
  • HTML views (298)
  • Cited by (0)

Other articles
by authors

[Back to Top]