
-
Previous Article
Repeated-root constacyclic codes of length $ 6lp^s $
- AMC Home
- This Issue
-
Next Article
The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes
Some properties of the cycle decomposition of WG-NLFSR
a. | Science and Technology on Information Assurance Laboratory, Beijing, China |
b. | Data Communication Science and Technology Research Institute, Beijing, China |
In this paper, we give some properties of the cycle decomposition of a nonlinear feedback shift register called WG-NLFSR which was presented by Mandal and Gong recently. First we give the parity of the state transition transformation of WG-NLFSR and then by the relation of the parity of a permutation and its number of cycles given in Theorem 2 in Section 1, we show that the number of cycles in the cycle decomposition of WG-NLFSR is even. Second we study the properties of the cycle decomposition of WG-NLFSR when the coefficients of the characteristic polynomial belong to the proper subfields of the finite field on which the WG-NLFSR is defined. Finally, we give some properties of the cycle decomposition of the filtering WG7-NLFSR.
References:
[1] |
P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul, Basic Abstract Algebra, 2nd Edition, Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9781139174237.![]() ![]() |
[2] |
U. Cheng,
On the cycle structure of certain classes of nonlinear shift registers, Journal of Combinatorial Theory, 37 (1984), 61-68.
doi: 10.1016/0097-3165(84)90019-0. |
[3] |
H. Dobbertin,
Kasami power functions, permutation polynomials and cyclic difference sets, Difference Sets, Sequences and Their Correlation Properties (Bad Windsheim, 1998), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, 542 (1999), 133-158.
|
[4] |
S. W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, Calif.-Cambridge-Amsterdam, 1967. |
[5] |
G. Gong and A. M. Youssef,
Cryptographic properties of the Welch-Gong transformation sequence generators, IEEE Transactions on Information Theory, 48 (2002), 2837-2846.
doi: 10.1109/TIT.2002.804043. |
[6] |
T. Helleseth,
Nonlinear shift registers - A survey and challenges, Algebraic Curves and Finite Fields, Radon Ser. Comput. Appl. Math., De Gruyter, Berlin, 16 (2014), 121-144.
|
[7] |
K. Kjeldsen,
On the cycle structure of a set of nonlinear shift registers with symmetric feedback functions, Journal of Combinatorial Theory Ser. A, 20 (1976), 154-169.
doi: 10.1016/0097-3165(76)90013-3. |
[8] |
K. Mandal and G. Gong, Filtering nonlinear feedback shift registers using Welch-Gong transformations for securing RFID applications, ICST Trans. Security Safety, 3 (2016), e3. Google Scholar |
[9] |
J. Mykkeltveit, M. K. Siu and P. Tong,
On the cycle structure of some nonlinear shift register sequences, Information and Control, 43 (1979), 202-215.
doi: 10.1016/S0019-9958(79)90708-3. |
[10] | Z. X. Wan and Z. D. Dai, Nonlinear Feedback Shift Registers, Science Press, Beijing, 1975. Google Scholar |
show all references
References:
[1] |
P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul, Basic Abstract Algebra, 2nd Edition, Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9781139174237.![]() ![]() |
[2] |
U. Cheng,
On the cycle structure of certain classes of nonlinear shift registers, Journal of Combinatorial Theory, 37 (1984), 61-68.
doi: 10.1016/0097-3165(84)90019-0. |
[3] |
H. Dobbertin,
Kasami power functions, permutation polynomials and cyclic difference sets, Difference Sets, Sequences and Their Correlation Properties (Bad Windsheim, 1998), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, 542 (1999), 133-158.
|
[4] |
S. W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, Calif.-Cambridge-Amsterdam, 1967. |
[5] |
G. Gong and A. M. Youssef,
Cryptographic properties of the Welch-Gong transformation sequence generators, IEEE Transactions on Information Theory, 48 (2002), 2837-2846.
doi: 10.1109/TIT.2002.804043. |
[6] |
T. Helleseth,
Nonlinear shift registers - A survey and challenges, Algebraic Curves and Finite Fields, Radon Ser. Comput. Appl. Math., De Gruyter, Berlin, 16 (2014), 121-144.
|
[7] |
K. Kjeldsen,
On the cycle structure of a set of nonlinear shift registers with symmetric feedback functions, Journal of Combinatorial Theory Ser. A, 20 (1976), 154-169.
doi: 10.1016/0097-3165(76)90013-3. |
[8] |
K. Mandal and G. Gong, Filtering nonlinear feedback shift registers using Welch-Gong transformations for securing RFID applications, ICST Trans. Security Safety, 3 (2016), e3. Google Scholar |
[9] |
J. Mykkeltveit, M. K. Siu and P. Tong,
On the cycle structure of some nonlinear shift register sequences, Information and Control, 43 (1979), 202-215.
doi: 10.1016/S0019-9958(79)90708-3. |
[10] | Z. X. Wan and Z. D. Dai, Nonlinear Feedback Shift Registers, Science Press, Beijing, 1975. Google Scholar |

[1] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[2] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[3] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[4] |
Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021013 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]