[1]
|
G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.
doi: 10.1016/j.ffa.2011.09.005.
|
[2]
|
G. Castagnoli, J. L. Massey, P. A. Schoeller and N. von Seemann, On repeated-root cyclic codes, IEEE Trans. Inf. Theory, 37 (1991), 337-342.
doi: 10.1109/18.75249.
|
[3]
|
B. C. Chen, H. Q. Dinh and H. W. Liu, Repeated-root constacyclic codes of length $lp^s$ and their duals, Discrete Math., 177 (2014), 60-70.
doi: 10.1016/j.dam.2014.05.046.
|
[4]
|
B. C. Chen, H. Q. Dinh and H. W. Liu, Repeated-root constacyclic codes of length $2l^mp^n$, Finite Fields Appl., 33 (2015), 137-159.
doi: 10.1016/j.ffa.2014.11.006.
|
[5]
|
H. Q. Dinh, On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions, Finite Fields Appl., 14 (2008), 22-40.
doi: 10.1016/j.ffa.2007.07.001.
|
[6]
|
H. Q. Dinh, Constacyclic codes of length $p^s$ over $\mathbb{F}_{p^m}+ u\mathbb {F}_{{p^m}}$, J. Algebra, 324 (2010), 940-950.
doi: 10.1016/j.jalgebra.2010.05.027.
|
[7]
|
H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Appl., 18 (2012), 133-143.
doi: 10.1016/j.ffa.2011.07.003.
|
[8]
|
H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discrete Math., 313 (2013), 983-991.
doi: 10.1016/j.disc.2013.01.024.
|
[9]
|
H. Q. Dinh, Structure of repeated-root cyclic and negacyclic codes of length $6p^s$ and their duals, Contemp. Math., 609 (2014), 69-87.
|
[10]
|
Y. Jia, S. Ling and C. P. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inf. Theory, 57 (2011), 2243-2251.
doi: 10.1109/TIT.2010.2092415.
|
[11]
|
X. S. Kai and S. X. Zhu, On the distance of cyclic codes of length $2^e$ over $Z_{4}$, Discrete Math., 310 (2010), 12-20.
doi: 10.1016/j.disc.2009.07.018.
|
[12]
|
L. Katburia and M. Raka, Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless, Adv. Math. Commun, 6 (2012), 499-503.
doi: 10.3934/amc.2012.6.499.
|
[13]
|
L. Liu, L. Q. Li, X. S. Kai and S. X. Zhu, Repeated-root constacyclic codes of length $3lp^s$ and their dual codes, Finite Fields Appl., 42 (2016), 269-295.
doi: 10.1016/j.ffa.2016.08.005.
|
[14]
|
A. Sharma, G. K. Bakshi, V. C. Dumir and M. Raka, Cyclotomic numbers and primitive idempotents in the ring $GF(q)[x]/ \langle {x^{p^{n}}-1} \rangle$, Finite Fields Appl., 10 (2004), 653-673.
doi: 10.1016/j.ffa.2004.01.005.
|
[15]
|
H. X. Tong, Repeated-root constacyclic codes of length $kl^ap^b$ over a finite field, Finite Fields Appl., 41 (2016), 159-173.
doi: 10.1016/j.ffa.2016.06.006.
|
[16]
|
J. H. van Lint, Repeated-root cyclic codes, IEEE Trans. Inf. Theory, 37 (1991), 343-345.
doi: 10.1109/18.75250.
|
[17]
|
Z.-X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
doi: 10.1142/5350.
|
[18]
|
W. Zhao, X. L. Tang and Z. Gu, Constacyclic codes of length $kl^mp^n$ over a finite field, Finite Fields Appl., 52 (2018), 51-66.
doi: 10.1016/j.ffa.2018.03.004.
|