[1]
|
R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, Network information flow, IEEE Trans. Inform. Theory, 46 (2000), 1204-1216.
doi: 10.1109/18.850663.
|
[2]
|
R. D. Barrolleta, L. Storme, E. Suárez-Canedo and P. Vandendriessche, On primitive constant dimension codes and a geometrical sunflower bound, Adv. Math. Commun., 11 (2017), 757-765.
doi: 10.3934/amc.2017055.
|
[3]
|
A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Zeit., 145 (1975), 211-229.
doi: 10.1007/BF01215286.
|
[4]
|
A. Beutelspacher and J. Ueberberg, A characteristic property of geometric $t$-spreads in finite projective spaces, Europ. J. Combin., 12 (1991), 277-281.
doi: 10.1016/S0195-6698(13)80110-2.
|
[5]
|
J. Eisfeld, On sets of $n$-dimensional subspaces of projective spaces intersecting mutually in an $(n-2)$-dimensional subspace, Discrete Math., 255 (2002), 81-85.
doi: 10.1016/S0012-365X(01)00390-9.
|
[6]
|
T. Etzion, Problems on $q$-analogs in coding theory, Preprint, arXiv: 1305.6126.
|
[7]
|
T. Etzion and N. Raviv, Equidistant codes in the Grassmannian, Discrete Appl. Math., 186 (2015), 87-97.
doi: 10.1016/j.dam.2015.01.024.
|
[8]
|
E. Gorla and A. Ravagnani, Equidistant subspace codes, Linear Algebra Appl., 490 (2016), 48-65.
|
[9]
|
T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi and B. Leong, A random linear network coding approach to multicast, IEEE Trans. Inform. Theory, 52 (2006), 4413-4430.
doi: 10.1109/TIT.2006.881746.
|
[10]
|
R. Kötter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591.
doi: 10.1109/TIT.2008.926449.
|
[11]
|
M. Lavrauw and G. Van de Voorde, Field reduction and linear sets in finite geometry, Topics in finite fields, Contemp. Math., Amer. Math. Soc., Providence, RI, 632 (2015), 271-293.
doi: 10.1090/conm/632/12633.
|
[12]
|
S.-Y. R. Li, R. W. Yeung and N. Cai, Linear network coding, IEEE Trans. Inform. Theory, 49 (2003), 371-381.
doi: 10.1109/TIT.2002.807285.
|
[13]
|
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
|
[14]
|
K. Metsch and L. Storme, Partial $t$-spreads in PG$(2t+1, q)$, Des. Codes Cryptogr., 18 (1999), 199-216.
doi: 10.1023/A:1008305824113.
|
[15]
|
O. Polverino, Linear sets in finite projective spaces, Discrete Math., 310 (2010), 3096-3107.
doi: 10.1016/j.disc.2009.04.007.
|
[16]
|
B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), 1-76.
doi: 10.1007/BF02410047.
|
[17]
|
C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379–423,623–656.
doi: 10.1002/j.1538-7305.1948.tb01338.x.
|
[18]
|
A. Weil, Adeles and Algebraic Groups, Progress in Mathematics, 23. Birkhäuser, Boston, Mass., 1982.
|