doi: 10.3934/amc.2020052

Properties of sets of Subspaces with Constant Intersection Dimension

Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

* Corresponding author: Lisa Hernandez Lucas

Received  April 2019 Revised  October 2019 Published  January 2020

A $ (k,k-t) $-SCID (set of Subspaces with Constant Intersection Dimension) is a set of $ k $-dimensional vector spaces that have pairwise intersections of dimension $ k-t $. Let $ \mathcal{C} = \{\pi_1,\ldots,\pi_n\} $ be a $ (k,k-t) $-SCID. Define $ S: = \langle \pi_1, \ldots, \pi_n \rangle $ and $ I: = \langle \pi_i \cap \pi_j \mid 1 \leq i < j \leq n \rangle $. We establish several upper bounds for $ \dim S + \dim I $ in different situations. We give a spectrum result under certain conditions for $ n $, giving examples of $ (k,k-t) $-SCIDs reaching a large interval of values for $ \dim S + \dim I $.

Citation: Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, doi: 10.3934/amc.2020052
References:
[1]

R. AhlswedeN. CaiS.-Y. R. Li and R. W. Yeung, Network information flow, IEEE Trans. Inform. Theory, 46 (2000), 1204-1216.  doi: 10.1109/18.850663.  Google Scholar

[2]

R. D. BarrolletaL. StormeE. Suárez-Canedo and P. Vandendriessche, On primitive constant dimension codes and a geometrical sunflower bound, Adv. Math. Commun., 11 (2017), 757-765.  doi: 10.3934/amc.2017055.  Google Scholar

[3]

A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Zeit., 145 (1975), 211-229.  doi: 10.1007/BF01215286.  Google Scholar

[4]

A. Beutelspacher and J. Ueberberg, A characteristic property of geometric $t$-spreads in finite projective spaces, Europ. J. Combin., 12 (1991), 277-281.  doi: 10.1016/S0195-6698(13)80110-2.  Google Scholar

[5]

J. Eisfeld, On sets of $n$-dimensional subspaces of projective spaces intersecting mutually in an $(n-2)$-dimensional subspace, Discrete Math., 255 (2002), 81-85.  doi: 10.1016/S0012-365X(01)00390-9.  Google Scholar

[6]

T. Etzion, Problems on $q$-analogs in coding theory, Preprint, arXiv: 1305.6126. Google Scholar

[7]

T. Etzion and N. Raviv, Equidistant codes in the Grassmannian, Discrete Appl. Math., 186 (2015), 87-97.  doi: 10.1016/j.dam.2015.01.024.  Google Scholar

[8]

E. Gorla and A. Ravagnani, Equidistant subspace codes, Linear Algebra Appl., 490 (2016), 48-65.   Google Scholar

[9]

T. HoM. MédardR. KoetterD. R. KargerM. EffrosJ. Shi and B. Leong, A random linear network coding approach to multicast, IEEE Trans. Inform. Theory, 52 (2006), 4413-4430.  doi: 10.1109/TIT.2006.881746.  Google Scholar

[10]

R. Kötter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591.  doi: 10.1109/TIT.2008.926449.  Google Scholar

[11]

M. Lavrauw and G. Van de Voorde, Field reduction and linear sets in finite geometry, Topics in finite fields, Contemp. Math., Amer. Math. Soc., Providence, RI, 632 (2015), 271-293.  doi: 10.1090/conm/632/12633.  Google Scholar

[12]

S.-Y. R. LiR. W. Yeung and N. Cai, Linear network coding, IEEE Trans. Inform. Theory, 49 (2003), 371-381.  doi: 10.1109/TIT.2002.807285.  Google Scholar

[13]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[14]

K. Metsch and L. Storme, Partial $t$-spreads in PG$(2t+1, q)$, Des. Codes Cryptogr., 18 (1999), 199-216.  doi: 10.1023/A:1008305824113.  Google Scholar

[15]

O. Polverino, Linear sets in finite projective spaces, Discrete Math., 310 (2010), 3096-3107.  doi: 10.1016/j.disc.2009.04.007.  Google Scholar

[16]

B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), 1-76.  doi: 10.1007/BF02410047.  Google Scholar

[17]

C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379–423,623–656. doi: 10.1002/j.1538-7305.1948.tb01338.x.  Google Scholar

[18]

A. Weil, Adeles and Algebraic Groups, Progress in Mathematics, 23. Birkhäuser, Boston, Mass., 1982.  Google Scholar

show all references

References:
[1]

R. AhlswedeN. CaiS.-Y. R. Li and R. W. Yeung, Network information flow, IEEE Trans. Inform. Theory, 46 (2000), 1204-1216.  doi: 10.1109/18.850663.  Google Scholar

[2]

R. D. BarrolletaL. StormeE. Suárez-Canedo and P. Vandendriessche, On primitive constant dimension codes and a geometrical sunflower bound, Adv. Math. Commun., 11 (2017), 757-765.  doi: 10.3934/amc.2017055.  Google Scholar

[3]

A. Beutelspacher, Partial spreads in finite projective spaces and partial designs, Math. Zeit., 145 (1975), 211-229.  doi: 10.1007/BF01215286.  Google Scholar

[4]

A. Beutelspacher and J. Ueberberg, A characteristic property of geometric $t$-spreads in finite projective spaces, Europ. J. Combin., 12 (1991), 277-281.  doi: 10.1016/S0195-6698(13)80110-2.  Google Scholar

[5]

J. Eisfeld, On sets of $n$-dimensional subspaces of projective spaces intersecting mutually in an $(n-2)$-dimensional subspace, Discrete Math., 255 (2002), 81-85.  doi: 10.1016/S0012-365X(01)00390-9.  Google Scholar

[6]

T. Etzion, Problems on $q$-analogs in coding theory, Preprint, arXiv: 1305.6126. Google Scholar

[7]

T. Etzion and N. Raviv, Equidistant codes in the Grassmannian, Discrete Appl. Math., 186 (2015), 87-97.  doi: 10.1016/j.dam.2015.01.024.  Google Scholar

[8]

E. Gorla and A. Ravagnani, Equidistant subspace codes, Linear Algebra Appl., 490 (2016), 48-65.   Google Scholar

[9]

T. HoM. MédardR. KoetterD. R. KargerM. EffrosJ. Shi and B. Leong, A random linear network coding approach to multicast, IEEE Trans. Inform. Theory, 52 (2006), 4413-4430.  doi: 10.1109/TIT.2006.881746.  Google Scholar

[10]

R. Kötter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591.  doi: 10.1109/TIT.2008.926449.  Google Scholar

[11]

M. Lavrauw and G. Van de Voorde, Field reduction and linear sets in finite geometry, Topics in finite fields, Contemp. Math., Amer. Math. Soc., Providence, RI, 632 (2015), 271-293.  doi: 10.1090/conm/632/12633.  Google Scholar

[12]

S.-Y. R. LiR. W. Yeung and N. Cai, Linear network coding, IEEE Trans. Inform. Theory, 49 (2003), 371-381.  doi: 10.1109/TIT.2002.807285.  Google Scholar

[13]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[14]

K. Metsch and L. Storme, Partial $t$-spreads in PG$(2t+1, q)$, Des. Codes Cryptogr., 18 (1999), 199-216.  doi: 10.1023/A:1008305824113.  Google Scholar

[15]

O. Polverino, Linear sets in finite projective spaces, Discrete Math., 310 (2010), 3096-3107.  doi: 10.1016/j.disc.2009.04.007.  Google Scholar

[16]

B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), 1-76.  doi: 10.1007/BF02410047.  Google Scholar

[17]

C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379–423,623–656. doi: 10.1002/j.1538-7305.1948.tb01338.x.  Google Scholar

[18]

A. Weil, Adeles and Algebraic Groups, Progress in Mathematics, 23. Birkhäuser, Boston, Mass., 1982.  Google Scholar

Table 1.  Summary of the best bounds found for $\dim S +\dim I$, for different values of $n$, $k$ and $t$
Condition Upper bound $\dim S + \dim I$ Sharp? Theorem
$(k-t)(n-1) \leq k$ $nk$ yes Theorem 2.1 & 2.2
$k\geq 2t$, $n\geq 3$,$(k,n)\neq(2t,3)$ $2k+2(n-2)t-(n-3)$ unknown Theorem 2.5
$k <2t$ $(k-t)(n-1) > k$ $nk$ no Theorem 2.1 & 2.2
Condition Upper bound $\dim S + \dim I$ Sharp? Theorem
$(k-t)(n-1) \leq k$ $nk$ yes Theorem 2.1 & 2.2
$k\geq 2t$, $n\geq 3$,$(k,n)\neq(2t,3)$ $2k+2(n-2)t-(n-3)$ unknown Theorem 2.5
$k <2t$ $(k-t)(n-1) > k$ $nk$ no Theorem 2.1 & 2.2
[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[3]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[4]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[5]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[6]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[7]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[10]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[11]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[12]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (75)
  • HTML views (408)
  • Cited by (0)

Other articles
by authors

[Back to Top]