[1]
|
D. Augot, M. Barbier and A. Couvreur, List-decoding of binary Goppa codes up to the binary Johnson bound, 2011 IEEE Information Theory Workshop, (2011), 229–233.
doi: 10.1109/ITW.2011.6089384.
|
[2]
|
M. Baldi, LDPC codes in the McEliece cryptosystem: Attacks and countermeasures, Enhancing Cryptographic Primitives with Techniques from Error Correcting Codes, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., IOS, Amsterdam, 23 (2009), 160-174.
|
[3]
|
D. J. Bernstein, List decoding for binary Goppa codes, Coding and Cryptology, Lecture Notes in Comput. Sci., Springer, Heidelberg, 6639 (2011), 62-80.
doi: 10.1007/978-3-642-20901-7_4.
|
[4]
|
D. J. Bernstein, T. Lange and C. Peters, Attacking and defending the McEliece cryptosystem, Post-quantum cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 5299 (2008), 31-46.
doi: 10.1007/978-3-540-88403-3_3.
|
[5]
|
N. T. Courtois, M. Finiasz and N. Sendrier, How to achieve a McEliece-based digital signature scheme, Advances in Cryptology–ASIACRYPT 2001 (Gold Coast), Lecture Notes in Comput. Sci., Springer, Berlin, 2248 (2001), 157–174.
doi: 10.1007/3-540-45682-1_10.
|
[6]
|
P. Delsarte, On subfield subcodes of modified Reed-Solomon codes, IEEE Trans. Information Theory, IT-21 (1975), 575-576.
doi: 10.1109/tit.1975.1055435.
|
[7]
|
M. Elia, E. Viterbo and G. Bertinetti, Decoding of binary separable Goppa codes using Berlekamp-Massey algorithm, Electronics Letters, 35 (1999), 1720-1721.
doi: 10.1049/el:19991190.
|
[8]
|
J. W. P. Hirschfeld, G. Korchmáros and F. Torres, Algebraic Curves Over a Finite Field, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2008.
|
[9]
|
T. Hoholdt and R. Pellikaan, On the decoding of algebraic-geometric codes, IEEE Transactions on Information Theory, 41 (1995), 1589-1614.
doi: 10.1109/18.476214.
|
[10]
|
Y. X. Li, R. H. Deng and X. M. Wang, On the equivalence of McEliece's and Niederreiter's public-key cryptosystems, IEEE Transactions on Information Theory, 40 (1994), 271-273.
doi: 10.1109/18.272496.
|
[11]
|
P. Loidreau and N. Sendrier, Weak keys in the McEliece public-key cryptosystem, IEEE Trans. Inform. Theory, 47 (2001), 1207-1211.
doi: 10.1109/18.915687.
|
[12]
|
A. J. Menezes, I. F. Blake, X. H. Gao, R. C. Mullin, S. A. Vanstone and T. Yaghoobian, Applications of Finite Fields, The Kluwer International Series in Engineering and Computer Science, 199. Kluwer Academic Publishers, Boston, MA, 1993.
doi: 10.1007/978-1-4757-2226-0.
|
[13]
|
R. Misoczki and P. S. Barreto, Compact McEliece keys from Goppa codes, International Workshop on Selected Areas in Cryptography, (2009), 376–392.
|
[14]
|
G. P. Nagy and S. El Khalfaoui, HERmitian, Computing with divisors, Riemann-Roch spaces and AG-odes of Hermitian curves, Version 0.1, (2019), GAP package, URL https://github.com/nagygp/Hermitian.
|
[15]
|
R. Pellikaan, On the efficient decoding of algebraic-geometric codes, Eurocode'92, CISM Courses and Lect., Springer, Vienna, 339 (1993), 231-253.
doi: 10.1007/978-3-7091-2786-5_20.
|
[16]
|
F. Piñero and H. Janwa, On the subfield subcodes of Hermitian codes, Designs, Codes and Cryptography, 70 (2014), 157-173.
doi: 10.1007/s10623-012-9736-9.
|
[17]
|
S. Sakata, H. E. Jensen and T. Hoholdt, Generalized Berlekamp-Massey decoding of algebraic-geometric codes up to half the Feng-Rao bound, IEEE Transactions on Information Theory, 41 (1995), 1762-1768.
doi: 10.1109/18.476248.
|
[18]
|
S. A. Stepanov, Codes on Algebraic Curves, Kluwer Academic/Plenum Publishers, New York, 1999.
doi: 10.1007/978-1-4615-4785-3.
|
[19]
|
H. Stichtenoth, Algebraic Function Fields and Codes, Second edition. Graduate Texts in Mathematics, 254. Springer-Verlag, Berlin, 2009.
|
[20]
|
M. van der Vlugt, The true dimension of certain binary Goppa codes, IEEE Transactions on Information Theory, 36 (1990), 397-398.
doi: 10.1109/18.52487.
|
[21]
|
M. van der Vlugt, On the dimension of trace codes, IEEE Transactions on Information Theory, 37 (1991), 196-199.
doi: 10.1109/18.61140.
|
[22]
|
P. Véron, Goppa codes and trace operator, IEEE Trans. Inform. Theory, 44 (1998), 290-294.
doi: 10.1109/18.651048.
|
[23]
|
P. Véron, True dimension of some binary quadratic trace Goppa codes, Des. Codes Cryptogr., 24 (2001), 81-97.
doi: 10.1023/A:1011281431366.
|
[24]
|
P. Véron, Proof of conjectures on the true dimension of some binary Goppa codes, Des. Codes Cryptogr., 36 (2005), 317-325.
doi: 10.1007/s10623-004-1722-4.
|
[25]
|
C. Wieschebrink, Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes, Post-Quantum Cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 6061 (2010), 61-72.
doi: 10.1007/978-3-642-12929-2_5.
|
[26]
|
S. Y. Yan, Quantum Attacks on Public-Key Cryptosystems, Springer, 2013.
doi: 10.1007/978-1-4419-7722-9.
|