May  2021, 15(2): 227-240. doi: 10.3934/amc.2020055

Construction of minimal linear codes from multi-variable functions

1. 

Glocal Campus, Konkuk University, Chungju, 27478, South Korea

2. 

Department of Mathematics, Sungkyunkwan University, Suwon, 16419, South Korea

3. 

Innovation Center for Industrial Mathematics, National Institute for Mathematical Sciences, Suwon, 16229, South Korea

* Corresponding author: Minwon Na

Received  July 2019 Revised  October 2019 Published  January 2020

Fund Project: The first author was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (NRF-2017R1A2B2004574). The second author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2019R1I1A1A01060467). The third author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2018R1D1A1B07046315)

In this paper, we define a linear code by using multi-variable functions, and construct three classes of minimal linear codes with few-weight from multi-variable functions.

Citation: Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055
References:
[1]

A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inf. Theory, 44 (1998), 2010-2017.  doi: 10.1109/18.705584.  Google Scholar

[2]

D. Bartoli and M. Bonini, Minimal linear codes in odd characteristic, IEEE Transactions on Information Theory, 65 (2019), 4152-4155.  doi: 10.1109/TIT.2019.2891992.  Google Scholar

[3]

G. R. Blakley, Safeguarding cryptographic keys, Proceedings of AFIPS National Computer Conference. New York, USA, AFIPS Press, 48 (1979), 313-317.  doi: 10.1109/MARK.1979.8817296.  Google Scholar

[4]

A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes, Ars Combin., 18 (1984), 181-186.   Google Scholar

[5]

Y. Borissov and N. Manev, Minimal codewords in linear codes, Serdica Math. J., 30 (2004), 303-324.   Google Scholar

[6]

Y. BorissovN. Manev and S. Nikova, On the non-minimal codewords in binary Reed-Muller codes, Discrete Appl. Math., 128 (2003), 65-74.  doi: 10.1016/S0166-218X(02)00436-5.  Google Scholar

[7]

S. Chang and J. Y. Hyun, Linear codes from simplicial complexes, Des. Codes Cryptogr., 86 (2018), 2167-2181.  doi: 10.1007/s10623-017-0442-5.  Google Scholar

[8]

G. D. CohenS. Mesnager and A. Patey, On minimal and quasi-minimal linear codes, IMACC 2013, LNCS, Springer, Heidelberg, 8308 (2013), 85-98.   Google Scholar

[9]

C. S. Ding, A construction of binary linear codes from boolean functions, Discrete mathematics, 339 (2016), 2288-2303.  doi: 10.1016/j.disc.2016.03.029.  Google Scholar

[10]

K. L. Ding and C. S. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Transactions on Information Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[11]

C. S. DingZ. L. Heng and Z. C. Zhou, Minimal binary linear codes, IEEE Trans. Inf. Theory, 64 (2018), 6536-6545.  doi: 10.1109/TIT.2018.2819196.  Google Scholar

[12]

Z. L. HengC. S. Ding and Z. C. Zhou, Minimal linear codes over finite fields, Finite Fields and Their Applications, 54 (2018), 176-196.  doi: 10.1016/j.ffa.2018.08.010.  Google Scholar

[13]

Z. Heng and Q. Yue, A class of binary linear codes with at most three weights, IEEE Communications Letters, 19 (2015), 1488-1491.  doi: 10.1109/LCOMM.2015.2455032.  Google Scholar

[14]

Z. L. Heng and Q. Yue, Two classes of two-weight linear codes, Finite Fields and Their Applications, 38 (2016), 72-92.  doi: 10.1016/j.ffa.2015.12.002.  Google Scholar

[15]

T. Y. Hwang, Decoding linear block codes for minimizing word error rate, IEEE Trans. Inform. Theory, 25 (1979), 733-737.  doi: 10.1109/TIT.1979.1056120.  Google Scholar

[16]

J. L. Massey, Minimal codewords and secret sharing, Proc. 6th Joint Swedish-Russian Int. Workshop on Info. Theory, (1993), 276–279. Google Scholar

[17]

R. J. McEliece and D. V. Sarwate, On sharing secrets and Reed-Solomon codes, Comm. ACM, 24 (1981), 583-584.  doi: 10.1145/358746.358762.  Google Scholar

[18]

J. SchillewaertL. Storme and J. A. Thas, A Minimal codewords in Reed-Muller codes, Des. Codes Cryptogr., 54 (2010), 273-286.  doi: 10.1007/s10623-009-9323-x.  Google Scholar

[19]

A. Shamir, How to share a secret, Communications of the ACM, 22 (1979), 612-613.  doi: 10.1145/359168.359176.  Google Scholar

[20]

C. M. TangN. LiY. F. QiZ. C. Zhou and T. Helleseth, Linear codes with two or three weights from weakly regular bent functions, IEEE Transactions on Information Theory, 62 (2016), 1166-1176.  doi: 10.1109/TIT.2016.2518678.  Google Scholar

[21]

J. Yuan and C. S. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212.  doi: 10.1109/TIT.2005.860412.  Google Scholar

[22]

W. Q. ZhangH. D. Yan and H. L. Wei, Four families of minimal binary linear codes with $\frac{w_{\min}}{w_{\max}} \leq\frac{1}{2}$, Appl. Algebra Engrg. Comm. Comput., 30 (2019), 175-184.  doi: 10.1007/s00200-018-0367-x.  Google Scholar

show all references

References:
[1]

A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inf. Theory, 44 (1998), 2010-2017.  doi: 10.1109/18.705584.  Google Scholar

[2]

D. Bartoli and M. Bonini, Minimal linear codes in odd characteristic, IEEE Transactions on Information Theory, 65 (2019), 4152-4155.  doi: 10.1109/TIT.2019.2891992.  Google Scholar

[3]

G. R. Blakley, Safeguarding cryptographic keys, Proceedings of AFIPS National Computer Conference. New York, USA, AFIPS Press, 48 (1979), 313-317.  doi: 10.1109/MARK.1979.8817296.  Google Scholar

[4]

A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes, Ars Combin., 18 (1984), 181-186.   Google Scholar

[5]

Y. Borissov and N. Manev, Minimal codewords in linear codes, Serdica Math. J., 30 (2004), 303-324.   Google Scholar

[6]

Y. BorissovN. Manev and S. Nikova, On the non-minimal codewords in binary Reed-Muller codes, Discrete Appl. Math., 128 (2003), 65-74.  doi: 10.1016/S0166-218X(02)00436-5.  Google Scholar

[7]

S. Chang and J. Y. Hyun, Linear codes from simplicial complexes, Des. Codes Cryptogr., 86 (2018), 2167-2181.  doi: 10.1007/s10623-017-0442-5.  Google Scholar

[8]

G. D. CohenS. Mesnager and A. Patey, On minimal and quasi-minimal linear codes, IMACC 2013, LNCS, Springer, Heidelberg, 8308 (2013), 85-98.   Google Scholar

[9]

C. S. Ding, A construction of binary linear codes from boolean functions, Discrete mathematics, 339 (2016), 2288-2303.  doi: 10.1016/j.disc.2016.03.029.  Google Scholar

[10]

K. L. Ding and C. S. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Transactions on Information Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[11]

C. S. DingZ. L. Heng and Z. C. Zhou, Minimal binary linear codes, IEEE Trans. Inf. Theory, 64 (2018), 6536-6545.  doi: 10.1109/TIT.2018.2819196.  Google Scholar

[12]

Z. L. HengC. S. Ding and Z. C. Zhou, Minimal linear codes over finite fields, Finite Fields and Their Applications, 54 (2018), 176-196.  doi: 10.1016/j.ffa.2018.08.010.  Google Scholar

[13]

Z. Heng and Q. Yue, A class of binary linear codes with at most three weights, IEEE Communications Letters, 19 (2015), 1488-1491.  doi: 10.1109/LCOMM.2015.2455032.  Google Scholar

[14]

Z. L. Heng and Q. Yue, Two classes of two-weight linear codes, Finite Fields and Their Applications, 38 (2016), 72-92.  doi: 10.1016/j.ffa.2015.12.002.  Google Scholar

[15]

T. Y. Hwang, Decoding linear block codes for minimizing word error rate, IEEE Trans. Inform. Theory, 25 (1979), 733-737.  doi: 10.1109/TIT.1979.1056120.  Google Scholar

[16]

J. L. Massey, Minimal codewords and secret sharing, Proc. 6th Joint Swedish-Russian Int. Workshop on Info. Theory, (1993), 276–279. Google Scholar

[17]

R. J. McEliece and D. V. Sarwate, On sharing secrets and Reed-Solomon codes, Comm. ACM, 24 (1981), 583-584.  doi: 10.1145/358746.358762.  Google Scholar

[18]

J. SchillewaertL. Storme and J. A. Thas, A Minimal codewords in Reed-Muller codes, Des. Codes Cryptogr., 54 (2010), 273-286.  doi: 10.1007/s10623-009-9323-x.  Google Scholar

[19]

A. Shamir, How to share a secret, Communications of the ACM, 22 (1979), 612-613.  doi: 10.1145/359168.359176.  Google Scholar

[20]

C. M. TangN. LiY. F. QiZ. C. Zhou and T. Helleseth, Linear codes with two or three weights from weakly regular bent functions, IEEE Transactions on Information Theory, 62 (2016), 1166-1176.  doi: 10.1109/TIT.2016.2518678.  Google Scholar

[21]

J. Yuan and C. S. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212.  doi: 10.1109/TIT.2005.860412.  Google Scholar

[22]

W. Q. ZhangH. D. Yan and H. L. Wei, Four families of minimal binary linear codes with $\frac{w_{\min}}{w_{\max}} \leq\frac{1}{2}$, Appl. Algebra Engrg. Comm. Comput., 30 (2019), 175-184.  doi: 10.1007/s00200-018-0367-x.  Google Scholar

[1]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, 2021, 20 (2) : 915-931. doi: 10.3934/cpaa.2020297

[2]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[3]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[4]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[5]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[6]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[7]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[8]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, 2021, 20 (2) : 801-815. doi: 10.3934/cpaa.2020291

[9]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[10]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[11]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[12]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

[13]

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021025

[14]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[15]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[16]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed bvp for the variable-viscosity compressible stokes pdes. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021009

[17]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[18]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[19]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021004

[20]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (206)
  • HTML views (501)
  • Cited by (0)

Other articles
by authors

[Back to Top]