doi: 10.3934/amc.2020055

Construction of minimal linear codes from multi-variable functions

1. 

Glocal Campus, Konkuk University, Chungju, 27478, South Korea

2. 

Department of Mathematics, Sungkyunkwan University, Suwon, 16419, South Korea

3. 

Innovation Center for Industrial Mathematics, National Institute for Mathematical Sciences, Suwon, 16229, South Korea

* Corresponding author: Minwon Na

Received  July 2019 Revised  October 2019 Published  January 2020

Fund Project: The first author was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (NRF-2017R1A2B2004574). The second author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2019R1I1A1A01060467). The third author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2018R1D1A1B07046315).

In this paper, we define a linear code by using multi-variable functions, and construct three classes of minimal linear codes with few-weight from multi-variable functions.

Citation: Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, doi: 10.3934/amc.2020055
References:
[1]

A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inf. Theory, 44 (1998), 2010-2017.  doi: 10.1109/18.705584.  Google Scholar

[2]

D. Bartoli and M. Bonini, Minimal linear codes in odd characteristic, IEEE Transactions on Information Theory, 65 (2019), 4152-4155.  doi: 10.1109/TIT.2019.2891992.  Google Scholar

[3]

G. R. Blakley, Safeguarding cryptographic keys, Proceedings of AFIPS National Computer Conference. New York, USA, AFIPS Press, 48 (1979), 313-317.  doi: 10.1109/MARK.1979.8817296.  Google Scholar

[4]

A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes, Ars Combin., 18 (1984), 181-186.   Google Scholar

[5]

Y. Borissov and N. Manev, Minimal codewords in linear codes, Serdica Math. J., 30 (2004), 303-324.   Google Scholar

[6]

Y. BorissovN. Manev and S. Nikova, On the non-minimal codewords in binary Reed-Muller codes, Discrete Appl. Math., 128 (2003), 65-74.  doi: 10.1016/S0166-218X(02)00436-5.  Google Scholar

[7]

S. Chang and J. Y. Hyun, Linear codes from simplicial complexes, Des. Codes Cryptogr., 86 (2018), 2167-2181.  doi: 10.1007/s10623-017-0442-5.  Google Scholar

[8]

G. D. CohenS. Mesnager and A. Patey, On minimal and quasi-minimal linear codes, IMACC 2013, LNCS, Springer, Heidelberg, 8308 (2013), 85-98.   Google Scholar

[9]

C. S. Ding, A construction of binary linear codes from boolean functions, Discrete mathematics, 339 (2016), 2288-2303.  doi: 10.1016/j.disc.2016.03.029.  Google Scholar

[10]

K. L. Ding and C. S. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Transactions on Information Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[11]

C. S. DingZ. L. Heng and Z. C. Zhou, Minimal binary linear codes, IEEE Trans. Inf. Theory, 64 (2018), 6536-6545.  doi: 10.1109/TIT.2018.2819196.  Google Scholar

[12]

Z. L. HengC. S. Ding and Z. C. Zhou, Minimal linear codes over finite fields, Finite Fields and Their Applications, 54 (2018), 176-196.  doi: 10.1016/j.ffa.2018.08.010.  Google Scholar

[13]

Z. Heng and Q. Yue, A class of binary linear codes with at most three weights, IEEE Communications Letters, 19 (2015), 1488-1491.  doi: 10.1109/LCOMM.2015.2455032.  Google Scholar

[14]

Z. L. Heng and Q. Yue, Two classes of two-weight linear codes, Finite Fields and Their Applications, 38 (2016), 72-92.  doi: 10.1016/j.ffa.2015.12.002.  Google Scholar

[15]

T. Y. Hwang, Decoding linear block codes for minimizing word error rate, IEEE Trans. Inform. Theory, 25 (1979), 733-737.  doi: 10.1109/TIT.1979.1056120.  Google Scholar

[16]

J. L. Massey, Minimal codewords and secret sharing, Proc. 6th Joint Swedish-Russian Int. Workshop on Info. Theory, (1993), 276–279. Google Scholar

[17]

R. J. McEliece and D. V. Sarwate, On sharing secrets and Reed-Solomon codes, Comm. ACM, 24 (1981), 583-584.  doi: 10.1145/358746.358762.  Google Scholar

[18]

J. SchillewaertL. Storme and J. A. Thas, A Minimal codewords in Reed-Muller codes, Des. Codes Cryptogr., 54 (2010), 273-286.  doi: 10.1007/s10623-009-9323-x.  Google Scholar

[19]

A. Shamir, How to share a secret, Communications of the ACM, 22 (1979), 612-613.  doi: 10.1145/359168.359176.  Google Scholar

[20]

C. M. TangN. LiY. F. QiZ. C. Zhou and T. Helleseth, Linear codes with two or three weights from weakly regular bent functions, IEEE Transactions on Information Theory, 62 (2016), 1166-1176.  doi: 10.1109/TIT.2016.2518678.  Google Scholar

[21]

J. Yuan and C. S. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212.  doi: 10.1109/TIT.2005.860412.  Google Scholar

[22]

W. Q. ZhangH. D. Yan and H. L. Wei, Four families of minimal binary linear codes with $\frac{w_{\min}}{w_{\max}} \leq\frac{1}{2}$, Appl. Algebra Engrg. Comm. Comput., 30 (2019), 175-184.  doi: 10.1007/s00200-018-0367-x.  Google Scholar

show all references

References:
[1]

A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inf. Theory, 44 (1998), 2010-2017.  doi: 10.1109/18.705584.  Google Scholar

[2]

D. Bartoli and M. Bonini, Minimal linear codes in odd characteristic, IEEE Transactions on Information Theory, 65 (2019), 4152-4155.  doi: 10.1109/TIT.2019.2891992.  Google Scholar

[3]

G. R. Blakley, Safeguarding cryptographic keys, Proceedings of AFIPS National Computer Conference. New York, USA, AFIPS Press, 48 (1979), 313-317.  doi: 10.1109/MARK.1979.8817296.  Google Scholar

[4]

A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes, Ars Combin., 18 (1984), 181-186.   Google Scholar

[5]

Y. Borissov and N. Manev, Minimal codewords in linear codes, Serdica Math. J., 30 (2004), 303-324.   Google Scholar

[6]

Y. BorissovN. Manev and S. Nikova, On the non-minimal codewords in binary Reed-Muller codes, Discrete Appl. Math., 128 (2003), 65-74.  doi: 10.1016/S0166-218X(02)00436-5.  Google Scholar

[7]

S. Chang and J. Y. Hyun, Linear codes from simplicial complexes, Des. Codes Cryptogr., 86 (2018), 2167-2181.  doi: 10.1007/s10623-017-0442-5.  Google Scholar

[8]

G. D. CohenS. Mesnager and A. Patey, On minimal and quasi-minimal linear codes, IMACC 2013, LNCS, Springer, Heidelberg, 8308 (2013), 85-98.   Google Scholar

[9]

C. S. Ding, A construction of binary linear codes from boolean functions, Discrete mathematics, 339 (2016), 2288-2303.  doi: 10.1016/j.disc.2016.03.029.  Google Scholar

[10]

K. L. Ding and C. S. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Transactions on Information Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[11]

C. S. DingZ. L. Heng and Z. C. Zhou, Minimal binary linear codes, IEEE Trans. Inf. Theory, 64 (2018), 6536-6545.  doi: 10.1109/TIT.2018.2819196.  Google Scholar

[12]

Z. L. HengC. S. Ding and Z. C. Zhou, Minimal linear codes over finite fields, Finite Fields and Their Applications, 54 (2018), 176-196.  doi: 10.1016/j.ffa.2018.08.010.  Google Scholar

[13]

Z. Heng and Q. Yue, A class of binary linear codes with at most three weights, IEEE Communications Letters, 19 (2015), 1488-1491.  doi: 10.1109/LCOMM.2015.2455032.  Google Scholar

[14]

Z. L. Heng and Q. Yue, Two classes of two-weight linear codes, Finite Fields and Their Applications, 38 (2016), 72-92.  doi: 10.1016/j.ffa.2015.12.002.  Google Scholar

[15]

T. Y. Hwang, Decoding linear block codes for minimizing word error rate, IEEE Trans. Inform. Theory, 25 (1979), 733-737.  doi: 10.1109/TIT.1979.1056120.  Google Scholar

[16]

J. L. Massey, Minimal codewords and secret sharing, Proc. 6th Joint Swedish-Russian Int. Workshop on Info. Theory, (1993), 276–279. Google Scholar

[17]

R. J. McEliece and D. V. Sarwate, On sharing secrets and Reed-Solomon codes, Comm. ACM, 24 (1981), 583-584.  doi: 10.1145/358746.358762.  Google Scholar

[18]

J. SchillewaertL. Storme and J. A. Thas, A Minimal codewords in Reed-Muller codes, Des. Codes Cryptogr., 54 (2010), 273-286.  doi: 10.1007/s10623-009-9323-x.  Google Scholar

[19]

A. Shamir, How to share a secret, Communications of the ACM, 22 (1979), 612-613.  doi: 10.1145/359168.359176.  Google Scholar

[20]

C. M. TangN. LiY. F. QiZ. C. Zhou and T. Helleseth, Linear codes with two or three weights from weakly regular bent functions, IEEE Transactions on Information Theory, 62 (2016), 1166-1176.  doi: 10.1109/TIT.2016.2518678.  Google Scholar

[21]

J. Yuan and C. S. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212.  doi: 10.1109/TIT.2005.860412.  Google Scholar

[22]

W. Q. ZhangH. D. Yan and H. L. Wei, Four families of minimal binary linear codes with $\frac{w_{\min}}{w_{\max}} \leq\frac{1}{2}$, Appl. Algebra Engrg. Comm. Comput., 30 (2019), 175-184.  doi: 10.1007/s00200-018-0367-x.  Google Scholar

[1]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[2]

Peter Šepitka. Riccati equations for linear Hamiltonian systems without controllability condition. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1685-1730. doi: 10.3934/dcds.2019074

[3]

Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096

[4]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[5]

Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control & Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31

[6]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations & Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[7]

Jehad O. Alzabut. A necessary and sufficient condition for the existence of periodic solutions of linear impulsive differential equations with distributed delay. Conference Publications, 2007, 2007 (Special) : 35-43. doi: 10.3934/proc.2007.2007.35

[8]

Kunio Hidano, Dongbing Zha. Remarks on a system of quasi-linear wave equations in 3D satisfying the weak null condition. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1735-1767. doi: 10.3934/cpaa.2019082

[9]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[10]

João Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 641-656. doi: 10.3934/dcds.2006.15.641

[11]

TÔn Vı$\underset{.}{\overset{\hat{\ }}{\mathop{\text{E}}}}\, $T T$\mathop {\text{A}}\limits_. $, Linhthi hoai Nguyen, Atsushi Yagi. A sustainability condition for stochastic forest model. Communications on Pure & Applied Analysis, 2017, 16 (2) : 699-718. doi: 10.3934/cpaa.2017034

[12]

Shie Mannor, Vianney Perchet, Gilles Stoltz. A primal condition for approachability with partial monitoring. Journal of Dynamics & Games, 2014, 1 (3) : 447-469. doi: 10.3934/jdg.2014.1.447

[13]

Baojun Bian, Pengfei Guan. A structural condition for microscopic convexity principle. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 789-807. doi: 10.3934/dcds.2010.28.789

[14]

Scott Nollet, Frederico Xavier. Global inversion via the Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 17-28. doi: 10.3934/dcds.2002.8.17

[15]

Antonio Azzollini. On a functional satisfying a weak Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1829-1840. doi: 10.3934/dcds.2014.34.1829

[16]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[17]

Alexandre Rocha, Mário Jorge Dias Carneiro. A dynamical condition for differentiability of Mather's average action. Journal of Geometric Mechanics, 2014, 6 (4) : 549-566. doi: 10.3934/jgm.2014.6.549

[18]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[19]

Samia Challal, Abdeslem Lyaghfouri. The heterogeneous dam problem with leaky boundary condition. Communications on Pure & Applied Analysis, 2011, 10 (1) : 93-125. doi: 10.3934/cpaa.2011.10.93

[20]

Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013

2018 Impact Factor: 0.879

Article outline

Figures and Tables

[Back to Top]