-
Previous Article
Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations
- AMC Home
- This Issue
-
Next Article
On the dimension of the subfield subcodes of 1-point Hermitian codes
Construction of minimal linear codes from multi-variable functions
1. | Glocal Campus, Konkuk University, Chungju, 27478, South Korea |
2. | Department of Mathematics, Sungkyunkwan University, Suwon, 16419, South Korea |
3. | Innovation Center for Industrial Mathematics, National Institute for Mathematical Sciences, Suwon, 16229, South Korea |
In this paper, we define a linear code by using multi-variable functions, and construct three classes of minimal linear codes with few-weight from multi-variable functions.
References:
[1] |
A. Ashikhmin and A. Barg,
Minimal vectors in linear codes, IEEE Trans. Inf. Theory, 44 (1998), 2010-2017.
doi: 10.1109/18.705584. |
[2] |
D. Bartoli and M. Bonini,
Minimal linear codes in odd characteristic, IEEE Transactions on Information Theory, 65 (2019), 4152-4155.
doi: 10.1109/TIT.2019.2891992. |
[3] |
G. R. Blakley,
Safeguarding cryptographic keys, Proceedings of AFIPS National Computer Conference. New York, USA, AFIPS Press, 48 (1979), 313-317.
doi: 10.1109/MARK.1979.8817296. |
[4] |
A. Bonisoli,
Every equidistant linear code is a sequence of dual Hamming codes, Ars Combin., 18 (1984), 181-186.
|
[5] |
Y. Borissov and N. Manev,
Minimal codewords in linear codes, Serdica Math. J., 30 (2004), 303-324.
|
[6] |
Y. Borissov, N. Manev and S. Nikova,
On the non-minimal codewords in binary Reed-Muller codes, Discrete Appl. Math., 128 (2003), 65-74.
doi: 10.1016/S0166-218X(02)00436-5. |
[7] |
S. Chang and J. Y. Hyun,
Linear codes from simplicial complexes, Des. Codes Cryptogr., 86 (2018), 2167-2181.
doi: 10.1007/s10623-017-0442-5. |
[8] |
G. D. Cohen, S. Mesnager and A. Patey, On minimal and quasi-minimal linear codes, IMACC 2013, LNCS, Springer, Heidelberg, 8308 (2013), 85-98. Google Scholar |
[9] |
C. S. Ding,
A construction of binary linear codes from boolean functions, Discrete mathematics, 339 (2016), 2288-2303.
doi: 10.1016/j.disc.2016.03.029. |
[10] |
K. L. Ding and C. S. Ding,
A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Transactions on Information Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861. |
[11] |
C. S. Ding, Z. L. Heng and Z. C. Zhou,
Minimal binary linear codes, IEEE Trans. Inf. Theory, 64 (2018), 6536-6545.
doi: 10.1109/TIT.2018.2819196. |
[12] |
Z. L. Heng, C. S. Ding and Z. C. Zhou,
Minimal linear codes over finite fields, Finite Fields and Their Applications, 54 (2018), 176-196.
doi: 10.1016/j.ffa.2018.08.010. |
[13] |
Z. Heng and Q. Yue,
A class of binary linear codes with at most three weights, IEEE Communications Letters, 19 (2015), 1488-1491.
doi: 10.1109/LCOMM.2015.2455032. |
[14] |
Z. L. Heng and Q. Yue,
Two classes of two-weight linear codes, Finite Fields and Their Applications, 38 (2016), 72-92.
doi: 10.1016/j.ffa.2015.12.002. |
[15] |
T. Y. Hwang,
Decoding linear block codes for minimizing word error rate, IEEE Trans. Inform. Theory, 25 (1979), 733-737.
doi: 10.1109/TIT.1979.1056120. |
[16] |
J. L. Massey, Minimal codewords and secret sharing, Proc. 6th Joint Swedish-Russian Int. Workshop on Info. Theory, (1993), 276–279. Google Scholar |
[17] |
R. J. McEliece and D. V. Sarwate,
On sharing secrets and Reed-Solomon codes, Comm. ACM, 24 (1981), 583-584.
doi: 10.1145/358746.358762. |
[18] |
J. Schillewaert, L. Storme and J. A. Thas,
A Minimal codewords in Reed-Muller codes, Des. Codes Cryptogr., 54 (2010), 273-286.
doi: 10.1007/s10623-009-9323-x. |
[19] |
A. Shamir,
How to share a secret, Communications of the ACM, 22 (1979), 612-613.
doi: 10.1145/359168.359176. |
[20] |
C. M. Tang, N. Li, Y. F. Qi, Z. C. Zhou and T. Helleseth,
Linear codes with two or three weights from weakly regular bent functions, IEEE Transactions on Information Theory, 62 (2016), 1166-1176.
doi: 10.1109/TIT.2016.2518678. |
[21] |
J. Yuan and C. S. Ding,
Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212.
doi: 10.1109/TIT.2005.860412. |
[22] |
W. Q. Zhang, H. D. Yan and H. L. Wei,
Four families of minimal binary linear codes with $\frac{w_{\min}}{w_{\max}} \leq\frac{1}{2}$, Appl. Algebra Engrg. Comm. Comput., 30 (2019), 175-184.
doi: 10.1007/s00200-018-0367-x. |
show all references
References:
[1] |
A. Ashikhmin and A. Barg,
Minimal vectors in linear codes, IEEE Trans. Inf. Theory, 44 (1998), 2010-2017.
doi: 10.1109/18.705584. |
[2] |
D. Bartoli and M. Bonini,
Minimal linear codes in odd characteristic, IEEE Transactions on Information Theory, 65 (2019), 4152-4155.
doi: 10.1109/TIT.2019.2891992. |
[3] |
G. R. Blakley,
Safeguarding cryptographic keys, Proceedings of AFIPS National Computer Conference. New York, USA, AFIPS Press, 48 (1979), 313-317.
doi: 10.1109/MARK.1979.8817296. |
[4] |
A. Bonisoli,
Every equidistant linear code is a sequence of dual Hamming codes, Ars Combin., 18 (1984), 181-186.
|
[5] |
Y. Borissov and N. Manev,
Minimal codewords in linear codes, Serdica Math. J., 30 (2004), 303-324.
|
[6] |
Y. Borissov, N. Manev and S. Nikova,
On the non-minimal codewords in binary Reed-Muller codes, Discrete Appl. Math., 128 (2003), 65-74.
doi: 10.1016/S0166-218X(02)00436-5. |
[7] |
S. Chang and J. Y. Hyun,
Linear codes from simplicial complexes, Des. Codes Cryptogr., 86 (2018), 2167-2181.
doi: 10.1007/s10623-017-0442-5. |
[8] |
G. D. Cohen, S. Mesnager and A. Patey, On minimal and quasi-minimal linear codes, IMACC 2013, LNCS, Springer, Heidelberg, 8308 (2013), 85-98. Google Scholar |
[9] |
C. S. Ding,
A construction of binary linear codes from boolean functions, Discrete mathematics, 339 (2016), 2288-2303.
doi: 10.1016/j.disc.2016.03.029. |
[10] |
K. L. Ding and C. S. Ding,
A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Transactions on Information Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861. |
[11] |
C. S. Ding, Z. L. Heng and Z. C. Zhou,
Minimal binary linear codes, IEEE Trans. Inf. Theory, 64 (2018), 6536-6545.
doi: 10.1109/TIT.2018.2819196. |
[12] |
Z. L. Heng, C. S. Ding and Z. C. Zhou,
Minimal linear codes over finite fields, Finite Fields and Their Applications, 54 (2018), 176-196.
doi: 10.1016/j.ffa.2018.08.010. |
[13] |
Z. Heng and Q. Yue,
A class of binary linear codes with at most three weights, IEEE Communications Letters, 19 (2015), 1488-1491.
doi: 10.1109/LCOMM.2015.2455032. |
[14] |
Z. L. Heng and Q. Yue,
Two classes of two-weight linear codes, Finite Fields and Their Applications, 38 (2016), 72-92.
doi: 10.1016/j.ffa.2015.12.002. |
[15] |
T. Y. Hwang,
Decoding linear block codes for minimizing word error rate, IEEE Trans. Inform. Theory, 25 (1979), 733-737.
doi: 10.1109/TIT.1979.1056120. |
[16] |
J. L. Massey, Minimal codewords and secret sharing, Proc. 6th Joint Swedish-Russian Int. Workshop on Info. Theory, (1993), 276–279. Google Scholar |
[17] |
R. J. McEliece and D. V. Sarwate,
On sharing secrets and Reed-Solomon codes, Comm. ACM, 24 (1981), 583-584.
doi: 10.1145/358746.358762. |
[18] |
J. Schillewaert, L. Storme and J. A. Thas,
A Minimal codewords in Reed-Muller codes, Des. Codes Cryptogr., 54 (2010), 273-286.
doi: 10.1007/s10623-009-9323-x. |
[19] |
A. Shamir,
How to share a secret, Communications of the ACM, 22 (1979), 612-613.
doi: 10.1145/359168.359176. |
[20] |
C. M. Tang, N. Li, Y. F. Qi, Z. C. Zhou and T. Helleseth,
Linear codes with two or three weights from weakly regular bent functions, IEEE Transactions on Information Theory, 62 (2016), 1166-1176.
doi: 10.1109/TIT.2016.2518678. |
[21] |
J. Yuan and C. S. Ding,
Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212.
doi: 10.1109/TIT.2005.860412. |
[22] |
W. Q. Zhang, H. D. Yan and H. L. Wei,
Four families of minimal binary linear codes with $\frac{w_{\min}}{w_{\max}} \leq\frac{1}{2}$, Appl. Algebra Engrg. Comm. Comput., 30 (2019), 175-184.
doi: 10.1007/s00200-018-0367-x. |
[1] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[2] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[3] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
[4] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[5] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[6] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[7] |
Todd Hurst, Volker Rehbock. Optimizing micro-algae production in a raceway pond with variable depth. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021027 |
[8] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[9] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[10] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[11] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[12] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[13] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[14] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[15] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[16] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[17] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[18] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[19] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[20] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
2019 Impact Factor: 0.734
Tools
Article outline
Figures and Tables
[Back to Top]