-
Previous Article
Verifying solutions to LWE with implications for concrete security
- AMC Home
- This Issue
-
Next Article
Construction of minimal linear codes from multi-variable functions
Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations
1. | Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India |
2. | Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway |
3. | Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943, USA |
In this paper, we investigate the Gowers $ U_2 $ norm for generalized Boolean functions, and $ \mathbb{Z} $-bent functions. The Gowers $ U_2 $ norm of a function is a measure of its resistance to affine approximation. Although nonlinearity serves the same purpose for the classical Boolean functions, it does not extend easily to generalized Boolean functions. We first provide a framework for employing the Gowers $ U_2 $ norm in the context of generalized Boolean functions with cryptographic significance, in particular, we give a recurrence rule for the Gowers $ U_2 $ norms, and an evaluation of the Gowers $ U_2 $ norm of functions that are affine over spreads. We also give an introduction to $ \mathbb{Z} $-bent functions, as proposed by Dobbertin and Leander [
References:
[1] |
L. Budaghyan, Construction and Analysis of Cryptographic Functions, Springer, Cham, 2014.
doi: 10.1007/978-3-319-12991-4. |
[2] |
C. Carlet, Boolean functions for cryptography and error correcting codes, Boolean Methods and Models, Cambridge Univ. Press, Cambridge, (2010), 257–397. Google Scholar |
[3] |
C. Carlet and S. Mesnager,
Four decades of research on bent functions, Des. Codes Cryptogr., 78 (2016), 5-50.
doi: 10.1007/s10623-015-0145-8. |
[4] |
F. Caullery and F. Rodier, Distribution of the absolute indicator of random Boolean functions, hal-01679358f, (2018), available at: https://hal.archives-ouvertes.fr/hal-01679358/document. Google Scholar |
[5] |
V. Y.-W. Chen, The Gowers Norm in the Testing of Boolean Functions, Ph.D. Thesis, Massachusetts Institute of Technology, June 2009. |
[6] |
T. W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications, Elsevier/Academic Press, Amsterdam, 2009.
![]() |
[7] |
J. F. Dillon,
Elementary Hadamard difference sets, Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, Utilitas Math., Winnipeg, Man., 14 (1975), 237-249.
|
[8] |
H. Dobbertin and G. Leander,
Bent functions embedded into the recursive framework of $\mathbb{Z}$-bent functions, Des. Codes Cryptogr., 49 (2008), 3-22.
doi: 10.1007/s10623-008-9189-3. |
[9] |
S. Gangopadhyay, B. Mandal and P. Stănică,
Gowers $U_3$ norm of some classes of bent Boolean functions, Des. Codes Cryptogr., 86 (2018), 1131-1148.
doi: 10.1007/s10623-017-0383-z. |
[10] |
S. Gangopadhyay, E. Pasalic, P. Stănică and S. Datta,
A note on non-splitting $\mathbb{Z}$-functions, Inf. Proc. Letters, 121 (2017), 1-5.
doi: 10.1016/j.ipl.2017.01.001. |
[11] |
S. Hodžić, W. Meidl and E. Pasalic,
Full characterization of generalized bent functions as (semi)-bent spaces, their dual and the Gray image, IEEE Trans. Inf. Theory, 64 (2018), 5432-5440.
doi: 10.1109/TIT.2018.2837883. |
[12] |
S. Hodžić and E. Pasalic,
Generalized bent functions—Some general construction methods and related necessary and sufficient conditions, Cryptogr. Commun., 7 (2015), 469-483.
doi: 10.1007/s12095-015-0126-9. |
[13] |
N. Kolomeec and A. Pavlov, Bent Functions on the Minimal Distance, IEEE Region 8 SIBIRCON-2010, Irkutsk Listvyanka, Russia, 2010. Google Scholar |
[14] |
P. V. Kumar, R. A. Scholtz and L. R. Welch,
Generalized bent functions and their properties, J. Combin Theory Ser. A, 40 (1985), 90-107.
doi: 10.1016/0097-3165(85)90049-4. |
[15] |
T. Martinsen, W. Meidl, S. Mesnager and P. Stănică,
Decomposing generalized bent and hyperbent functions, IEEE Trans. Inf. Theory, 63 (2017), 7804-7812.
doi: 10.1109/TIT.2017.2754498. |
[16] |
T. Martinsen, W. Meidl, A. Pott and P. Stănică,
On symmetry and differential properties of generalized Boolean functions, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 11321 (2018), 207-223.
|
[17] |
T. Martinsen, W. Meidl and P. Stănică,
Generalized bent functions and their Gray images, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 10064 (2017), 160-173.
|
[18] |
T. Martinsen, W. Meidl and P. Stănică,
Partial spread and vectorial generalized bent functions, Des. Codes Cryptogr., 85 (2017), 1-13.
doi: 10.1007/s10623-016-0283-7. |
[19] |
S. Mesnager, Bent Functions. Fundamentals and Results, Springer-Verlag, 2016.
doi: 10.1007/978-3-319-32595-8. |
[20] |
S. Mesnager, C. M. Tang, Y. F. Qi, L. B. Wang, B. F. Wu and K. Q. Feng,
Further results on generalized bent functions and their complete characterization, IEEE Trans. Inform. Theory, 64 (2018), 5441-5452.
doi: 10.1109/TIT.2018.2835518. |
[21] |
B. Preneel, R. Govaerts and J. Vandewalle, Cryptographic properties of quadratic Boolean functions, Int. Symp. Finite Fields and Appl., (1991), 9pp. Google Scholar |
[22] |
O. S. Rothaus,
On "bent" functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.
doi: 10.1016/0097-3165(76)90024-8. |
[23] |
K. U. Schmidt,
Quaternary constant-amplitude codes for multicode CDMA, IEEE Trans. Inf. Theory, 55 (2009), 1824-1832.
doi: 10.1109/TIT.2009.2013041. |
[24] |
P. Solé and N. Tokareva, Connections between quaternary and binary bent functions, Prikl. Diskr. Mat., 1 (2009), 16–18, http://eprint.iacr.org/2009/544.pdf. Google Scholar |
[25] |
P. Stănică, Weak and strong $2^k$-bent functions, IEEE Trans. Inf. Theory, 62 (2016), 2827-2835. Google Scholar |
[26] |
P. Stănică, T. Martinsen, S. Gangopadhyay and B. K. Singh,
Bent and generalized bent Boolean functions, Des. Codes Cryptogr., 69 (2013), 77-94.
doi: 10.1007/s10623-012-9622-5. |
[27] |
C. M. Tang, C. Xiang, Y. F. Qi and K. Q. Feng,
Complete characterization of generalized bent and $2^k$-bent Boolean functions, IEEE Trans. Inf. Theory, 63 (2017), 4668-4674.
doi: 10.1109/TIT.2017.2686987. |
[28] |
N. Tokareva, Bent Functions. Results and Applications to Cryptography, Elsevier/Academic Press, Amsterdam, 2015.
![]() |
[29] |
F. Zhang, S. Xia, P. Stănică and Y. Zhou, Further results on constructions of generalized bent Boolean functions, Inf. Sciences-China, 59 (2016), 1-3. Google Scholar |
[30] |
X.-M. Zhang and Y. L. Zheng,
GAC—the criterion for global avalanche characteristics of cryptographic functions, J. UCS, 1 (1995), 320-337.
|
show all references
References:
[1] |
L. Budaghyan, Construction and Analysis of Cryptographic Functions, Springer, Cham, 2014.
doi: 10.1007/978-3-319-12991-4. |
[2] |
C. Carlet, Boolean functions for cryptography and error correcting codes, Boolean Methods and Models, Cambridge Univ. Press, Cambridge, (2010), 257–397. Google Scholar |
[3] |
C. Carlet and S. Mesnager,
Four decades of research on bent functions, Des. Codes Cryptogr., 78 (2016), 5-50.
doi: 10.1007/s10623-015-0145-8. |
[4] |
F. Caullery and F. Rodier, Distribution of the absolute indicator of random Boolean functions, hal-01679358f, (2018), available at: https://hal.archives-ouvertes.fr/hal-01679358/document. Google Scholar |
[5] |
V. Y.-W. Chen, The Gowers Norm in the Testing of Boolean Functions, Ph.D. Thesis, Massachusetts Institute of Technology, June 2009. |
[6] |
T. W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications, Elsevier/Academic Press, Amsterdam, 2009.
![]() |
[7] |
J. F. Dillon,
Elementary Hadamard difference sets, Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, Utilitas Math., Winnipeg, Man., 14 (1975), 237-249.
|
[8] |
H. Dobbertin and G. Leander,
Bent functions embedded into the recursive framework of $\mathbb{Z}$-bent functions, Des. Codes Cryptogr., 49 (2008), 3-22.
doi: 10.1007/s10623-008-9189-3. |
[9] |
S. Gangopadhyay, B. Mandal and P. Stănică,
Gowers $U_3$ norm of some classes of bent Boolean functions, Des. Codes Cryptogr., 86 (2018), 1131-1148.
doi: 10.1007/s10623-017-0383-z. |
[10] |
S. Gangopadhyay, E. Pasalic, P. Stănică and S. Datta,
A note on non-splitting $\mathbb{Z}$-functions, Inf. Proc. Letters, 121 (2017), 1-5.
doi: 10.1016/j.ipl.2017.01.001. |
[11] |
S. Hodžić, W. Meidl and E. Pasalic,
Full characterization of generalized bent functions as (semi)-bent spaces, their dual and the Gray image, IEEE Trans. Inf. Theory, 64 (2018), 5432-5440.
doi: 10.1109/TIT.2018.2837883. |
[12] |
S. Hodžić and E. Pasalic,
Generalized bent functions—Some general construction methods and related necessary and sufficient conditions, Cryptogr. Commun., 7 (2015), 469-483.
doi: 10.1007/s12095-015-0126-9. |
[13] |
N. Kolomeec and A. Pavlov, Bent Functions on the Minimal Distance, IEEE Region 8 SIBIRCON-2010, Irkutsk Listvyanka, Russia, 2010. Google Scholar |
[14] |
P. V. Kumar, R. A. Scholtz and L. R. Welch,
Generalized bent functions and their properties, J. Combin Theory Ser. A, 40 (1985), 90-107.
doi: 10.1016/0097-3165(85)90049-4. |
[15] |
T. Martinsen, W. Meidl, S. Mesnager and P. Stănică,
Decomposing generalized bent and hyperbent functions, IEEE Trans. Inf. Theory, 63 (2017), 7804-7812.
doi: 10.1109/TIT.2017.2754498. |
[16] |
T. Martinsen, W. Meidl, A. Pott and P. Stănică,
On symmetry and differential properties of generalized Boolean functions, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 11321 (2018), 207-223.
|
[17] |
T. Martinsen, W. Meidl and P. Stănică,
Generalized bent functions and their Gray images, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 10064 (2017), 160-173.
|
[18] |
T. Martinsen, W. Meidl and P. Stănică,
Partial spread and vectorial generalized bent functions, Des. Codes Cryptogr., 85 (2017), 1-13.
doi: 10.1007/s10623-016-0283-7. |
[19] |
S. Mesnager, Bent Functions. Fundamentals and Results, Springer-Verlag, 2016.
doi: 10.1007/978-3-319-32595-8. |
[20] |
S. Mesnager, C. M. Tang, Y. F. Qi, L. B. Wang, B. F. Wu and K. Q. Feng,
Further results on generalized bent functions and their complete characterization, IEEE Trans. Inform. Theory, 64 (2018), 5441-5452.
doi: 10.1109/TIT.2018.2835518. |
[21] |
B. Preneel, R. Govaerts and J. Vandewalle, Cryptographic properties of quadratic Boolean functions, Int. Symp. Finite Fields and Appl., (1991), 9pp. Google Scholar |
[22] |
O. S. Rothaus,
On "bent" functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.
doi: 10.1016/0097-3165(76)90024-8. |
[23] |
K. U. Schmidt,
Quaternary constant-amplitude codes for multicode CDMA, IEEE Trans. Inf. Theory, 55 (2009), 1824-1832.
doi: 10.1109/TIT.2009.2013041. |
[24] |
P. Solé and N. Tokareva, Connections between quaternary and binary bent functions, Prikl. Diskr. Mat., 1 (2009), 16–18, http://eprint.iacr.org/2009/544.pdf. Google Scholar |
[25] |
P. Stănică, Weak and strong $2^k$-bent functions, IEEE Trans. Inf. Theory, 62 (2016), 2827-2835. Google Scholar |
[26] |
P. Stănică, T. Martinsen, S. Gangopadhyay and B. K. Singh,
Bent and generalized bent Boolean functions, Des. Codes Cryptogr., 69 (2013), 77-94.
doi: 10.1007/s10623-012-9622-5. |
[27] |
C. M. Tang, C. Xiang, Y. F. Qi and K. Q. Feng,
Complete characterization of generalized bent and $2^k$-bent Boolean functions, IEEE Trans. Inf. Theory, 63 (2017), 4668-4674.
doi: 10.1109/TIT.2017.2686987. |
[28] |
N. Tokareva, Bent Functions. Results and Applications to Cryptography, Elsevier/Academic Press, Amsterdam, 2015.
![]() |
[29] |
F. Zhang, S. Xia, P. Stănică and Y. Zhou, Further results on constructions of generalized bent Boolean functions, Inf. Sciences-China, 59 (2016), 1-3. Google Scholar |
[30] |
X.-M. Zhang and Y. L. Zheng,
GAC—the criterion for global avalanche characteristics of cryptographic functions, J. UCS, 1 (1995), 320-337.
|
[1] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[2] |
Ruonan Liu, Run Xu. Hermite-Hadamard type inequalities for harmonical $ (h1,h2)- $convex interval-valued functions. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021005 |
[3] |
Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020135 |
[4] |
Muhammad Aslam Noor, Khalida Inayat Noor. Properties of higher order preinvex functions. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 431-441. doi: 10.3934/naco.2020035 |
[5] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[6] |
Caili Sang, Zhen Chen. Optimal $ Z $-eigenvalue inclusion intervals of tensors and their applications. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021075 |
[7] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[8] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2635-3652. doi: 10.3934/dcds.2020378 |
[9] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[10] |
Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048 |
[11] |
Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080 |
[12] |
Shixiong Wang, Longjiang Qu, Chao Li, Shaojing Fu, Hao Chen. Finding small solutions of the equation $ \mathit{{Bx-Ay = z}} $ and its applications to cryptanalysis of the RSA cryptosystem. Advances in Mathematics of Communications, 2021, 15 (3) : 441-469. doi: 10.3934/amc.2020076 |
[13] |
Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021070 |
[14] |
Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021019 |
[15] |
Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021038 |
[16] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395 |
[17] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[18] |
Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079 |
[19] |
Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075 |
[20] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]