In this paper, we investigate the Gowers $ U_2 $ norm for generalized Boolean functions, and $ \mathbb{Z} $-bent functions. The Gowers $ U_2 $ norm of a function is a measure of its resistance to affine approximation. Although nonlinearity serves the same purpose for the classical Boolean functions, it does not extend easily to generalized Boolean functions. We first provide a framework for employing the Gowers $ U_2 $ norm in the context of generalized Boolean functions with cryptographic significance, in particular, we give a recurrence rule for the Gowers $ U_2 $ norms, and an evaluation of the Gowers $ U_2 $ norm of functions that are affine over spreads. We also give an introduction to $ \mathbb{Z} $-bent functions, as proposed by Dobbertin and Leander [
Citation: |
[1] |
L. Budaghyan, Construction and Analysis of Cryptographic Functions, Springer, Cham, 2014.
doi: 10.1007/978-3-319-12991-4.![]() ![]() ![]() |
[2] |
C. Carlet, Boolean functions for cryptography and error correcting codes, Boolean Methods and Models, Cambridge Univ. Press, Cambridge, (2010), 257–397.
![]() |
[3] |
C. Carlet and S. Mesnager, Four decades of research on bent functions, Des. Codes Cryptogr., 78 (2016), 5-50.
doi: 10.1007/s10623-015-0145-8.![]() ![]() ![]() |
[4] |
F. Caullery and F. Rodier, Distribution of the absolute indicator of random Boolean functions, hal-01679358f, (2018), available at: https://hal.archives-ouvertes.fr/hal-01679358/document.
![]() |
[5] |
V. Y.-W. Chen, The Gowers Norm in the Testing of Boolean Functions, Ph.D. Thesis, Massachusetts Institute of Technology, June 2009.
![]() ![]() |
[6] |
T. W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications, Elsevier/Academic Press, Amsterdam, 2009.
![]() ![]() |
[7] |
J. F. Dillon, Elementary Hadamard difference sets, Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, Utilitas Math., Winnipeg, Man., 14 (1975), 237-249.
![]() ![]() |
[8] |
H. Dobbertin and G. Leander, Bent functions embedded into the recursive framework of $\mathbb{Z}$-bent functions, Des. Codes Cryptogr., 49 (2008), 3-22.
doi: 10.1007/s10623-008-9189-3.![]() ![]() ![]() |
[9] |
S. Gangopadhyay, B. Mandal and P. Stănică, Gowers $U_3$ norm of some classes of bent Boolean functions, Des. Codes Cryptogr., 86 (2018), 1131-1148.
doi: 10.1007/s10623-017-0383-z.![]() ![]() ![]() |
[10] |
S. Gangopadhyay, E. Pasalic, P. Stănică and S. Datta, A note on non-splitting $\mathbb{Z}$-functions, Inf. Proc. Letters, 121 (2017), 1-5.
doi: 10.1016/j.ipl.2017.01.001.![]() ![]() ![]() |
[11] |
S. Hodžić, W. Meidl and E. Pasalic, Full characterization of generalized bent functions as (semi)-bent spaces, their dual and the Gray image, IEEE Trans. Inf. Theory, 64 (2018), 5432-5440.
doi: 10.1109/TIT.2018.2837883.![]() ![]() ![]() |
[12] |
S. Hodžić and E. Pasalic, Generalized bent functions—Some general construction methods and related necessary and sufficient conditions, Cryptogr. Commun., 7 (2015), 469-483.
doi: 10.1007/s12095-015-0126-9.![]() ![]() ![]() |
[13] |
N. Kolomeec and A. Pavlov, Bent Functions on the Minimal Distance, IEEE Region 8 SIBIRCON-2010, Irkutsk Listvyanka, Russia, 2010.
![]() |
[14] |
P. V. Kumar, R. A. Scholtz and L. R. Welch, Generalized bent functions and their properties, J. Combin Theory Ser. A, 40 (1985), 90-107.
doi: 10.1016/0097-3165(85)90049-4.![]() ![]() ![]() |
[15] |
T. Martinsen, W. Meidl, S. Mesnager and P. Stănică, Decomposing generalized bent and hyperbent functions, IEEE Trans. Inf. Theory, 63 (2017), 7804-7812.
doi: 10.1109/TIT.2017.2754498.![]() ![]() ![]() |
[16] |
T. Martinsen, W. Meidl, A. Pott and P. Stănică, On symmetry and differential properties of generalized Boolean functions, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 11321 (2018), 207-223.
![]() ![]() |
[17] |
T. Martinsen, W. Meidl and P. Stănică, Generalized bent functions and their Gray images, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 10064 (2017), 160-173.
![]() ![]() |
[18] |
T. Martinsen, W. Meidl and P. Stănică, Partial spread and vectorial generalized bent functions, Des. Codes Cryptogr., 85 (2017), 1-13.
doi: 10.1007/s10623-016-0283-7.![]() ![]() ![]() |
[19] |
S. Mesnager, Bent Functions. Fundamentals and Results, Springer-Verlag, 2016.
doi: 10.1007/978-3-319-32595-8.![]() ![]() ![]() |
[20] |
S. Mesnager, C. M. Tang, Y. F. Qi, L. B. Wang, B. F. Wu and K. Q. Feng, Further results on generalized bent functions and their complete characterization, IEEE Trans. Inform. Theory, 64 (2018), 5441-5452.
doi: 10.1109/TIT.2018.2835518.![]() ![]() ![]() |
[21] |
B. Preneel, R. Govaerts and J. Vandewalle, Cryptographic properties of quadratic Boolean functions, Int. Symp. Finite Fields and Appl., (1991), 9pp.
![]() |
[22] |
O. S. Rothaus, On "bent" functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.
doi: 10.1016/0097-3165(76)90024-8.![]() ![]() ![]() |
[23] |
K. U. Schmidt, Quaternary constant-amplitude codes for multicode CDMA, IEEE Trans. Inf. Theory, 55 (2009), 1824-1832.
doi: 10.1109/TIT.2009.2013041.![]() ![]() ![]() |
[24] |
P. Solé and N. Tokareva, Connections between quaternary and binary bent functions, Prikl. Diskr. Mat., 1 (2009), 16–18, http://eprint.iacr.org/2009/544.pdf.
![]() |
[25] |
P. Stănică, Weak and strong $2^k$-bent functions, IEEE Trans. Inf. Theory, 62 (2016), 2827-2835.
![]() |
[26] |
P. Stănică, T. Martinsen, S. Gangopadhyay and B. K. Singh, Bent and generalized bent Boolean functions, Des. Codes Cryptogr., 69 (2013), 77-94.
doi: 10.1007/s10623-012-9622-5.![]() ![]() ![]() |
[27] |
C. M. Tang, C. Xiang, Y. F. Qi and K. Q. Feng, Complete characterization of generalized bent and $2^k$-bent Boolean functions, IEEE Trans. Inf. Theory, 63 (2017), 4668-4674.
doi: 10.1109/TIT.2017.2686987.![]() ![]() ![]() |
[28] |
N. Tokareva, Bent Functions. Results and Applications to Cryptography, Elsevier/Academic Press, Amsterdam, 2015.
![]() ![]() |
[29] |
F. Zhang, S. Xia, P. Stănică and Y. Zhou, Further results on constructions of generalized bent Boolean functions, Inf. Sciences-China, 59 (2016), 1-3.
![]() |
[30] |
X.-M. Zhang and Y. L. Zheng, GAC—the criterion for global avalanche characteristics of cryptographic functions, J. UCS, 1 (1995), 320-337.
![]() ![]() |