\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations

  • * Corresponding author: Pantelimon Stăniă

    * Corresponding author: Pantelimon Stăniă
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we investigate the Gowers $ U_2 $ norm for generalized Boolean functions, and $ \mathbb{Z} $-bent functions. The Gowers $ U_2 $ norm of a function is a measure of its resistance to affine approximation. Although nonlinearity serves the same purpose for the classical Boolean functions, it does not extend easily to generalized Boolean functions. We first provide a framework for employing the Gowers $ U_2 $ norm in the context of generalized Boolean functions with cryptographic significance, in particular, we give a recurrence rule for the Gowers $ U_2 $ norms, and an evaluation of the Gowers $ U_2 $ norm of functions that are affine over spreads. We also give an introduction to $ \mathbb{Z} $-bent functions, as proposed by Dobbertin and Leander [8], to provide a recursive framework to study bent functions. In the second part of the paper, we concentrate on $ \mathbb{Z} $-bent functions and their $ U_2 $ norms. As a consequence of one of our results, we give an alternate proof to a known theorem of Dobbertin and Leander, and also find necessary and sufficient conditions for a function obtained by gluing $ \mathbb{Z} $-bent functions to be bent, in terms of the Gowers $ U_2 $ norms of its components.

    Mathematics Subject Classification: Primary: 94C10; Secondary: 06E30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] L. Budaghyan, Construction and Analysis of Cryptographic Functions, Springer, Cham, 2014. doi: 10.1007/978-3-319-12991-4.
    [2] C. Carlet, Boolean functions for cryptography and error correcting codes, Boolean Methods and Models, Cambridge Univ. Press, Cambridge, (2010), 257–397.
    [3] C. Carlet and S. Mesnager, Four decades of research on bent functions, Des. Codes Cryptogr., 78 (2016), 5-50.  doi: 10.1007/s10623-015-0145-8.
    [4] F. Caullery and F. Rodier, Distribution of the absolute indicator of random Boolean functions, hal-01679358f, (2018), available at: https://hal.archives-ouvertes.fr/hal-01679358/document.
    [5] V. Y.-W. Chen, The Gowers Norm in the Testing of Boolean Functions, Ph.D. Thesis, Massachusetts Institute of Technology, June 2009.
    [6] T. W. Cusick and  P. StănicăCryptographic Boolean Functions and Applications, Elsevier/Academic Press, Amsterdam, 2009. 
    [7] J. F. Dillon, Elementary Hadamard difference sets, Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, Utilitas Math., Winnipeg, Man., 14 (1975), 237-249. 
    [8] H. Dobbertin and G. Leander, Bent functions embedded into the recursive framework of $\mathbb{Z}$-bent functions, Des. Codes Cryptogr., 49 (2008), 3-22.  doi: 10.1007/s10623-008-9189-3.
    [9] S. GangopadhyayB. Mandal and P. Stănică, Gowers $U_3$ norm of some classes of bent Boolean functions, Des. Codes Cryptogr., 86 (2018), 1131-1148.  doi: 10.1007/s10623-017-0383-z.
    [10] S. GangopadhyayE. PasalicP. Stănică and S. Datta, A note on non-splitting $\mathbb{Z}$-functions, Inf. Proc. Letters, 121 (2017), 1-5.  doi: 10.1016/j.ipl.2017.01.001.
    [11] S. HodžićW. Meidl and E. Pasalic, Full characterization of generalized bent functions as (semi)-bent spaces, their dual and the Gray image, IEEE Trans. Inf. Theory, 64 (2018), 5432-5440.  doi: 10.1109/TIT.2018.2837883.
    [12] S. Hodžić and E. Pasalic, Generalized bent functions—Some general construction methods and related necessary and sufficient conditions, Cryptogr. Commun., 7 (2015), 469-483.  doi: 10.1007/s12095-015-0126-9.
    [13] N. Kolomeec and A. Pavlov, Bent Functions on the Minimal Distance, IEEE Region 8 SIBIRCON-2010, Irkutsk Listvyanka, Russia, 2010.
    [14] P. V. KumarR. A. Scholtz and L. R. Welch, Generalized bent functions and their properties, J. Combin Theory Ser. A, 40 (1985), 90-107.  doi: 10.1016/0097-3165(85)90049-4.
    [15] T. MartinsenW. MeidlS. Mesnager and P. Stănică, Decomposing generalized bent and hyperbent functions, IEEE Trans. Inf. Theory, 63 (2017), 7804-7812.  doi: 10.1109/TIT.2017.2754498.
    [16] T. MartinsenW. MeidlA. Pott and P. Stănică, On symmetry and differential properties of generalized Boolean functions, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 11321 (2018), 207-223. 
    [17] T. MartinsenW. Meidl and P. Stănică, Generalized bent functions and their Gray images, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 10064 (2017), 160-173. 
    [18] T. MartinsenW. Meidl and P. Stănică, Partial spread and vectorial generalized bent functions, Des. Codes Cryptogr., 85 (2017), 1-13.  doi: 10.1007/s10623-016-0283-7.
    [19] S. Mesnager, Bent Functions. Fundamentals and Results, Springer-Verlag, 2016. doi: 10.1007/978-3-319-32595-8.
    [20] S. MesnagerC. M. TangY. F. QiL. B. WangB. F. Wu and K. Q. Feng, Further results on generalized bent functions and their complete characterization, IEEE Trans. Inform. Theory, 64 (2018), 5441-5452.  doi: 10.1109/TIT.2018.2835518.
    [21] B. Preneel, R. Govaerts and J. Vandewalle, Cryptographic properties of quadratic Boolean functions, Int. Symp. Finite Fields and Appl., (1991), 9pp.
    [22] O. S. Rothaus, On "bent" functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.
    [23] K. U. Schmidt, Quaternary constant-amplitude codes for multicode CDMA, IEEE Trans. Inf. Theory, 55 (2009), 1824-1832.  doi: 10.1109/TIT.2009.2013041.
    [24] P. Solé and N. Tokareva, Connections between quaternary and binary bent functions, Prikl. Diskr. Mat., 1 (2009), 16–18, http://eprint.iacr.org/2009/544.pdf.
    [25] P. Stănică, Weak and strong $2^k$-bent functions, IEEE Trans. Inf. Theory, 62 (2016), 2827-2835. 
    [26] P. StănicăT. MartinsenS. Gangopadhyay and B. K. Singh, Bent and generalized bent Boolean functions, Des. Codes Cryptogr., 69 (2013), 77-94.  doi: 10.1007/s10623-012-9622-5.
    [27] C. M. TangC. XiangY. F. Qi and K. Q. Feng, Complete characterization of generalized bent and $2^k$-bent Boolean functions, IEEE Trans. Inf. Theory, 63 (2017), 4668-4674.  doi: 10.1109/TIT.2017.2686987.
    [28] N. TokarevaBent Functions. Results and Applications to Cryptography, Elsevier/Academic Press, Amsterdam, 2015. 
    [29] F. ZhangS. XiaP. Stănică and Y. Zhou, Further results on constructions of generalized bent Boolean functions, Inf. Sciences-China, 59 (2016), 1-3. 
    [30] X.-M. Zhang and Y. L. Zheng, GAC—the criterion for global avalanche characteristics of cryptographic functions, J. UCS, 1 (1995), 320-337. 
  • 加载中
SHARE

Article Metrics

HTML views(1332) PDF downloads(405) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return