[1]
|
R. Ahlswede, Group codes do not achieve shannon's channel capacity for general discrete channels, The Annals of Mathematical Statistics, 42 (1971), 224-240.
doi: 10.1214/aoms/1177693508.
|
[2]
|
J. P. Arpasi, One example of a non-Abelian group code over AWGN channels, Proceedings of the 14th Canadian Workshop on Information Theory, (2015), 115–119.
doi: 10.1109/CWIT.2015.7255165.
|
[3]
|
G. Como, Group codes outperform binary-coset codes on non-binary memoryless channels, IEEE Trans. Inform. Theory, 56 (2010), 4321-4334.
doi: 10.1109/TIT.2010.2054330.
|
[4]
|
G. Como and F. Fagnani, The capacity of abelian group codes over symmetric channels, IEEE Trans. Inform. Theory, 45 (2009), 3-31.
|
[5]
|
G. Como and F. Fagnani, Average spectra and minimum distance of low-density parity-check codes over abelian groups, SIAM J. Discrete Math., 23 (2008/09), 19-53.
doi: 10.1137/070686615.
|
[6]
|
T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd edition, Wiley InterScience, Piscataway, NJ, 2006.
|
[7]
|
G. D. Forney, Geometrically uniform codes, IEEE Trans. Inform. Theory, 37 (1991), 1241-1260.
doi: 10.1109/18.133243.
|
[8]
|
R. Gallager, Information Theory and Reliable Communication, Wiley and Sons, 1970.
doi: 10.1007/978-3-7091-2945-6.
|
[9]
|
F. Garin and F. Fagnani, Analysis of serial turbo codes over abelian groups for symmetric channels, SIAM J. Discrete Math., 22 (2008), 1488-1526.
doi: 10.1137/07068802X.
|
[10]
|
I. N. Herstein, Topics in Algebra, 2nd edition, Wiley and Sons, New York, 1975.
|
[11]
|
H. J. Kim, J. B. Nation and A. V. Shepler, Group coding with complex isometries, IEEE Trans. Inform. Theory, 61 (2015), 33-50.
doi: 10.1109/TIT.2014.2365020.
|
[12]
|
H. A. Loeliger, Signal sets matched to groups, IEEE Trans. Inform. Theory, 37 (1991), 1675-1682.
doi: 10.1109/18.104333.
|
[13]
|
H. A. Loeliger and T. Mittelholzer, Convolutional codes over groups. Codes and complexity, IEEE Trans. Inform. Theory, 42 (1996), 1660-1686.
doi: 10.1109/18.556664.
|
[14]
|
T. Mittelholzer and J. Lahtonen, Group codes generated by finite reflection groups, IEEE Trans. Inform. Theory, 42 (1996), 519-528.
doi: 10.1109/18.485721.
|
[15]
|
W. W. Peterson, J. B. Nation and M. P. Fossorier, Reflection group codes and their decoding, IEEE Trans. Inform. Theory, 56 (2010), 6273-6293.
doi: 10.1109/TIT.2010.2080571.
|
[16]
|
J. J. Rotman, An Introduction to the Theory of the Groups, 4th edition, Graduate Texts in Mathematics, 148. Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4176-8.
|
[17]
|
A. G. Sahebi and P. S. Pradhan, Abelian group codes for channel coding and source coding, IEEE Trans. Inform. Theory, 61 (2015), 2399-2414.
doi: 10.1109/TIT.2015.2407874.
|
[18]
|
N. Shulman and M. Feder, Random coding techniques for non-random codes, IEEE Trans. Inform. Theory, 45 (1999), 2101-2104.
doi: 10.1109/18.782147.
|
[19]
|
D. Slepian, Group codes for the gaussian channels, Bell Systems Technical Journal, 47 (1968), 575-602.
doi: 10.1002/j.1538-7305.1968.tb02486.x.
|