-
Previous Article
Two classes of near-optimal codebooks with respect to the Welch bound
- AMC Home
- This Issue
-
Next Article
Verifying solutions to LWE with implications for concrete security
On the existence of PD-sets: Algorithms arising from automorphism groups of codes
1. | Chair of Operations Research - Technische Universität München, Arcisstr. 21, 80333 Munich, Germany |
2. | Dipartimento di Matematica, Informatica ed Economia - Università degli Studi della Basilicata, Viale dell'Ateneo Lucano, 10, 85100 Potenza, Italy |
This paper deals with the problem of determining whether a PD-set exists for a given linear code $ \mathcal C $ and information set $ I $. A computational approach is proposed and illustrated with two exceptional codes with automorphism groups isomorphic to the sporadic simple groups $ \mathrm{M}_{12} $ and $ \mathrm{M}_{22} $, respectively. In both cases, the existence of a PD–set is proven. In general, the algorithm works well whenever the code $ \mathcal C $ has a very large automorphism group.
References:
[1] |
R. Abbott, J. Bray, S. Linton, S. Nickerson, S. Norton, R. Parker, I. Suleiman, J. Tripp, P. Walsh and R. Wilson, Atlas of finite group representations - version 3, http://brauer.maths.qmul.ac.uk/Atlas/. Google Scholar |
[2] |
J. Bierbrauer, S. Marcugini and F. Pambianco,
The Pace code, the Mathieu group ${M}_12$ and the small Witt design ${S}(5, 6, 12)$, Discrete Math., 340 (2017), 1187-1190.
doi: 10.1016/j.disc.2016.12.018. |
[3] |
W. Bosma, J. J. Cannon and C. Playoust,
The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125. |
[4] |
M. Braun, A. Kohnert and A. Wassermann,
Optimal linear codes from matrix groups, IEEE Trans. Inform. Theory, 51 (2005), 4247-4251.
doi: 10.1109/TIT.2005.859291. |
[5] |
W. Burnside, Theory of Groups of Finite Order, 2nd edition, Cambridge University Press, Cambridge, 1911.
doi: 10.1017/CBO9781139237253.![]() |
[6] |
P. Camion,
Linear codes with given automorphism groups, Discrete Math., 3 (1972), 33-45.
doi: 10.1016/0012-365X(72)90023-4. |
[7] |
H. Chabanne,
Permutation decoding of abelian codes, IEEE Trans. Inform. Theory, 38 (1992), 1826-1829.
doi: 10.1109/18.165460. |
[8] |
A. Cossidente, C. Nolè and A. Sonnino,
Cap codes arising from duality, Bull. Inst. Combin. Appl., 67 (2013), 33-42.
|
[9] |
A. Cossidente and A. Sonnino,
A geometric construction of a $[110, 5, 90]_9$–linear code admitting the Mathieu group ${M}_11$, IEEE Trans. Inform. Theory, 54 (2008), 5251-5252.
doi: 10.1109/TIT.2008.929966. |
[10] |
A. Cossidente and A. Sonnino,
Finite geometry and the Gale transform, Discrete Math., 310 (2010), 3206-3210.
doi: 10.1016/j.disc.2009.08.019. |
[11] |
A. Cossidente and A. Sonnino,
Some recent results in finite geometry and coding theory arising from the Gale transform, Rend. Mat. Appl. (7), 30 (2010), 67-76.
|
[12] |
A. Cossidente and A. Sonnino,
Linear codes arising from the Gale transform of distinguished subsets of some projective spaces, Discrete Math., 312 (2012), 647-651.
doi: 10.1016/j.disc.2011.05.022. |
[13] |
A. Cossidente and A. Sonnino,
On graphs and codes associated to the sporadic simple groups HS and ${M}_{22}$, Australas. J. Combin., 60 (2014), 208-216.
|
[14] |
D. Crnković, S. Rukavina and L. Simčić,
Binary doubly-even self-dual codes of length 72 with large automorphism groups, Math. Commun., 18 (2013), 297-308.
|
[15] |
W. Fish,
Binary codes and partial permutation decoding sets from the Johnson graphs, Graphs Combin., 31 (2015), 1381-1396.
doi: 10.1007/s00373-014-1485-2. |
[16] |
W. Fish, J. D. Key and E. Mwambene,
Partial permutation decoding for simplex codes, Adv. Math. Commun., 6 (2012), 505-516.
doi: 10.3934/amc.2012.6.505. |
[17] |
W. Fish, K. Kumwenda and E. Mwambene,
Codes related to line graphs of triangular graphs and permutation decoding, Quaest. Math., 35 (2012), 489-505.
doi: 10.2989/16073606.2012.742287. |
[18] |
M. Giulietti, G. Korchmáros, S. Marcugini and F. Pambianco,
Transitive $A_6$-invariant $k$-arcs in $PG(2, q)$, Des. Codes Cryptogr., 68 (2013), 73-79.
doi: 10.1007/s10623-012-9619-0. |
[19] |
D. M. Gordon,
Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory, 28 (1982), 541-543.
doi: 10.1109/TIT.1982.1056504. |
[20] |
M. Grassl, Bounds on the Minimum Distance of Linear Codes and Quantum Codes, Online available at http://www.codetables.de. Accessed on January 3, 2020. Google Scholar |
[21] |
R. Hill,
On the largest size of cap in $s_{5, 3}$, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 54 (1974), 378-384.
|
[22] |
R. Hill, A First Course in Coding Theory, Oxford Applied Mathematics and Computing Science Series, The Clarendon Press, Oxford University Press, New York, 1986. |
[23] |
W. C. Huffman, Codes and groups, in Handbook of Coding Theory (eds. V. S. Pless and W. C. Huffman), vol. 2, part 2, North-Holland, Amsterdam, 1998, chapter 17, 1345–1440. |
[24] |
L. Indaco and G. Korchmáros,
42-arcs in $PG(2, q)$ left invariant by $PSL(2, 7)$, Des. Codes Cryptogr., 64 (2012), 33-46.
doi: 10.1007/s10623-011-9532-y. |
[25] |
J. D. Key, Permutation decoding for codes from designs, finite geometries and graphs, in Information Security, Coding Theory and Related Combinatorics (eds. D. Crnkovič and V. Tonchev), vol. 29 of NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., IOS, Amsterdam, 2011,172–201. |
[26] |
J. D. Key and J. Limbupasiriporn,
Permutation decoding of codes from Paley graphs, Congr. Numer., 170 (2004), 143-155.
|
[27] |
J. D. Key, T. P. McDonough and V. C. Mavron,
Partial permutation decoding for codes from finite planes, European J. Combin., 26 (2005), 665-682.
doi: 10.1016/j.ejc.2004.04.007. |
[28] |
J. D. Key, T. P. McDonough and V. C. Mavron,
Information sets and partial permutation decoding for codes from finite geometries, Finite Fields Appl., 12 (2006), 232-247.
doi: 10.1016/j.ffa.2005.05.007. |
[29] |
J. D. Key, J. Moori and B. G. Rodrigues,
Permutation decoding for the binary codes from triangular graphs, European J. Combin., 25 (2004), 113-123.
doi: 10.1016/j.ejc.2003.08.001. |
[30] |
J. D. Key, J. Moori and B. G. Rodrigues,
Binary codes from graphs on triples and permutation decoding, Ars Combin., 79 (2006), 11-19.
|
[31] |
J. D. Key, J. Moori and B. G. Rodrigues,
Partial permutation decoding of some binary codes from graphs on triples, Ars Combin., 91 (2009), 363-371.
|
[32] |
J. D. Key, J. Moori and B. G. Rodrigues,
Codes associated with triangular graphs and permutation decoding, Int. J. Inf. Coding Theory, 1 (2010), 334-349.
doi: 10.1504/IJICOT.2010.032547. |
[33] |
J. D. Key and B. G. Rodrigues,
Codes from lattice and related graphs, and permutation decoding, Discrete Appl. Math., 158 (2010), 1807-1815.
doi: 10.1016/j.dam.2010.07.003. |
[34] |
J. D. Key and P. Seneviratne,
Binary codes from rectangular lattice graphs and permutation decoding, European J. Combin., 28 (2007), 121-126.
doi: 10.1016/j.ejc.2005.09.001. |
[35] |
J. D. Key and P. Seneviratne,
Permutation decoding for binary codes from lattice graphs, Discrete Math., 308 (2008), 2862-2867.
doi: 10.1016/j.disc.2006.06.049. |
[36] |
W. Knapp and H.-J. Schaeffer, On the codes related to the Higman-Sims graph, Electron. J. Combin., 22 (2015), Paper 1.19, 58 pp. |
[37] |
W. Knapp and P. Schmid,
Codes with prescribed permutation group, J. Algebra, 67 (1980), 415-435.
doi: 10.1016/0021-8693(80)90169-6. |
[38] |
A. Kohnert,
Constructing two-weight codes with prescribed groups of automorphisms, Discrete Appl. Math., 155 (2007), 1451-1457.
doi: 10.1016/j.dam.2007.03.006. |
[39] |
A. Kohnert and A. Wassermann,
Construction of binary and ternary self-orthogonal linear codes, Discrete Appl. Math., 157 (2009), 2118-2123.
doi: 10.1016/j.dam.2007.10.030. |
[40] |
A. Kohnert and J. Zwanzger,
New linear codes with prescribed group of automorphisms found by heuristic search, Adv. Math. Commun., 3 (2009), 157-166.
doi: 10.3934/amc.2009.3.157. |
[41] |
G. Korchmáros and N. Pace,
Infinite family of large complete arcs in $ {\rm{PG}} (2, q^n)$, with $q$ odd and $n>1$ odd, Des. Codes Cryptogr., 55 (2010), 285-296.
doi: 10.1007/s10623-009-9343-6. |
[42] |
H.-J. Kroll and R. Vincenti,
PD-sets for the codes related to some classical varieties, Discrete Math., 301 (2005), 89-105.
doi: 10.1016/j.disc.2004.11.020. |
[43] |
H.-J. Kroll and R. Vincenti,
Antiblocking systems and PD-sets, Discrete Math., 308 (2008), 401-407.
doi: 10.1016/j.disc.2006.11.056. |
[44] |
H.-J. Kroll and R. Vincenti,
PD-sets for binary RM-codes and the codes related to the Klein quadric and to the Schubert variety of $ \rm PG(5, 2)$, Discrete Math., 308 (2008), 408-414.
doi: 10.1016/j.disc.2006.11.057. |
[45] |
F. J. MacWilliams,
Permutation decoding of systematic codes, Bell System Tech. J., 43 (1964), 485-505.
doi: 10.1002/j.1538-7305.1964.tb04075.x. |
[46] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977, North-Holland Mathematical Library, Vol. 16. Google Scholar |
[47] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977, North-Holland Mathematical Library, Vol. 16. |
[48] |
P. M. Neumann,
A lemma that is not Burnside's, Math. Sci., 4 (1979), 133-141.
|
[49] |
N. Pace,
New ternary linear codes from projectivity groups, Discrete Math., 331 (2014), 22-26.
doi: 10.1016/j.disc.2014.04.027. |
[50] |
N. Pace,
On small complete arcs and transitive $A_5$-invariant arcs in the projective plane $PG(2, q)$, J. Combin. Des., 22 (2014), 425-434.
doi: 10.1002/jcd.21372. |
[51] |
N. Pace and A. Sonnino,
On linear codes admitting large automorphism groups, Des. Codes Cryptogr., 83 (2017), 115-143.
doi: 10.1007/s10623-016-0207-6. |
[52] |
B. G. Rodrigues,
Self-orthogonal designs and codes from the symplectic groups $s4(3)$ and $s4(4)$, Discrete Math., 308 (2008), 1941-1950.
doi: 10.1016/j.disc.2007.04.047. |
[53] |
P. Seneviratne,
Codes associated with circulant graphs and permutation decoding, Des. Codes Cryptogr., 70 (2014), 27-33.
doi: 10.1007/s10623-012-9637-y. |
[54] |
A. Sonnino,
Transitive PSL(2, 7)-invariant 42-arcs in 3-dimensional projective spaces, Des. Codes Cryptogr., 72 (2014), 455-463.
doi: 10.1007/s10623-012-9778-z. |
[55] |
B. Stroustrup, The C++ Programming Language, 4th edition, Addison-Wesley, Upper Saddle River, NJ, 2013. Google Scholar |
[56] |
L. M. G. M. Tolhuizen and W. J. van Gils,
A large automorphism group decreases the number of computations in the construction of an optimal encoder/decoder pair for a linear block code, IEEE Trans. Inform. Theory, 34 (1988), 333-338.
doi: 10.1109/18.2646. |
[57] |
J. Wolfmann,
A permutation decoding of the (24, 12, 8) Golay code, IEEE Trans. Inform. Theory, 29 (1983), 748-750.
doi: 10.1109/TIT.1983.1056726. |
show all references
References:
[1] |
R. Abbott, J. Bray, S. Linton, S. Nickerson, S. Norton, R. Parker, I. Suleiman, J. Tripp, P. Walsh and R. Wilson, Atlas of finite group representations - version 3, http://brauer.maths.qmul.ac.uk/Atlas/. Google Scholar |
[2] |
J. Bierbrauer, S. Marcugini and F. Pambianco,
The Pace code, the Mathieu group ${M}_12$ and the small Witt design ${S}(5, 6, 12)$, Discrete Math., 340 (2017), 1187-1190.
doi: 10.1016/j.disc.2016.12.018. |
[3] |
W. Bosma, J. J. Cannon and C. Playoust,
The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125. |
[4] |
M. Braun, A. Kohnert and A. Wassermann,
Optimal linear codes from matrix groups, IEEE Trans. Inform. Theory, 51 (2005), 4247-4251.
doi: 10.1109/TIT.2005.859291. |
[5] |
W. Burnside, Theory of Groups of Finite Order, 2nd edition, Cambridge University Press, Cambridge, 1911.
doi: 10.1017/CBO9781139237253.![]() |
[6] |
P. Camion,
Linear codes with given automorphism groups, Discrete Math., 3 (1972), 33-45.
doi: 10.1016/0012-365X(72)90023-4. |
[7] |
H. Chabanne,
Permutation decoding of abelian codes, IEEE Trans. Inform. Theory, 38 (1992), 1826-1829.
doi: 10.1109/18.165460. |
[8] |
A. Cossidente, C. Nolè and A. Sonnino,
Cap codes arising from duality, Bull. Inst. Combin. Appl., 67 (2013), 33-42.
|
[9] |
A. Cossidente and A. Sonnino,
A geometric construction of a $[110, 5, 90]_9$–linear code admitting the Mathieu group ${M}_11$, IEEE Trans. Inform. Theory, 54 (2008), 5251-5252.
doi: 10.1109/TIT.2008.929966. |
[10] |
A. Cossidente and A. Sonnino,
Finite geometry and the Gale transform, Discrete Math., 310 (2010), 3206-3210.
doi: 10.1016/j.disc.2009.08.019. |
[11] |
A. Cossidente and A. Sonnino,
Some recent results in finite geometry and coding theory arising from the Gale transform, Rend. Mat. Appl. (7), 30 (2010), 67-76.
|
[12] |
A. Cossidente and A. Sonnino,
Linear codes arising from the Gale transform of distinguished subsets of some projective spaces, Discrete Math., 312 (2012), 647-651.
doi: 10.1016/j.disc.2011.05.022. |
[13] |
A. Cossidente and A. Sonnino,
On graphs and codes associated to the sporadic simple groups HS and ${M}_{22}$, Australas. J. Combin., 60 (2014), 208-216.
|
[14] |
D. Crnković, S. Rukavina and L. Simčić,
Binary doubly-even self-dual codes of length 72 with large automorphism groups, Math. Commun., 18 (2013), 297-308.
|
[15] |
W. Fish,
Binary codes and partial permutation decoding sets from the Johnson graphs, Graphs Combin., 31 (2015), 1381-1396.
doi: 10.1007/s00373-014-1485-2. |
[16] |
W. Fish, J. D. Key and E. Mwambene,
Partial permutation decoding for simplex codes, Adv. Math. Commun., 6 (2012), 505-516.
doi: 10.3934/amc.2012.6.505. |
[17] |
W. Fish, K. Kumwenda and E. Mwambene,
Codes related to line graphs of triangular graphs and permutation decoding, Quaest. Math., 35 (2012), 489-505.
doi: 10.2989/16073606.2012.742287. |
[18] |
M. Giulietti, G. Korchmáros, S. Marcugini and F. Pambianco,
Transitive $A_6$-invariant $k$-arcs in $PG(2, q)$, Des. Codes Cryptogr., 68 (2013), 73-79.
doi: 10.1007/s10623-012-9619-0. |
[19] |
D. M. Gordon,
Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory, 28 (1982), 541-543.
doi: 10.1109/TIT.1982.1056504. |
[20] |
M. Grassl, Bounds on the Minimum Distance of Linear Codes and Quantum Codes, Online available at http://www.codetables.de. Accessed on January 3, 2020. Google Scholar |
[21] |
R. Hill,
On the largest size of cap in $s_{5, 3}$, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 54 (1974), 378-384.
|
[22] |
R. Hill, A First Course in Coding Theory, Oxford Applied Mathematics and Computing Science Series, The Clarendon Press, Oxford University Press, New York, 1986. |
[23] |
W. C. Huffman, Codes and groups, in Handbook of Coding Theory (eds. V. S. Pless and W. C. Huffman), vol. 2, part 2, North-Holland, Amsterdam, 1998, chapter 17, 1345–1440. |
[24] |
L. Indaco and G. Korchmáros,
42-arcs in $PG(2, q)$ left invariant by $PSL(2, 7)$, Des. Codes Cryptogr., 64 (2012), 33-46.
doi: 10.1007/s10623-011-9532-y. |
[25] |
J. D. Key, Permutation decoding for codes from designs, finite geometries and graphs, in Information Security, Coding Theory and Related Combinatorics (eds. D. Crnkovič and V. Tonchev), vol. 29 of NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., IOS, Amsterdam, 2011,172–201. |
[26] |
J. D. Key and J. Limbupasiriporn,
Permutation decoding of codes from Paley graphs, Congr. Numer., 170 (2004), 143-155.
|
[27] |
J. D. Key, T. P. McDonough and V. C. Mavron,
Partial permutation decoding for codes from finite planes, European J. Combin., 26 (2005), 665-682.
doi: 10.1016/j.ejc.2004.04.007. |
[28] |
J. D. Key, T. P. McDonough and V. C. Mavron,
Information sets and partial permutation decoding for codes from finite geometries, Finite Fields Appl., 12 (2006), 232-247.
doi: 10.1016/j.ffa.2005.05.007. |
[29] |
J. D. Key, J. Moori and B. G. Rodrigues,
Permutation decoding for the binary codes from triangular graphs, European J. Combin., 25 (2004), 113-123.
doi: 10.1016/j.ejc.2003.08.001. |
[30] |
J. D. Key, J. Moori and B. G. Rodrigues,
Binary codes from graphs on triples and permutation decoding, Ars Combin., 79 (2006), 11-19.
|
[31] |
J. D. Key, J. Moori and B. G. Rodrigues,
Partial permutation decoding of some binary codes from graphs on triples, Ars Combin., 91 (2009), 363-371.
|
[32] |
J. D. Key, J. Moori and B. G. Rodrigues,
Codes associated with triangular graphs and permutation decoding, Int. J. Inf. Coding Theory, 1 (2010), 334-349.
doi: 10.1504/IJICOT.2010.032547. |
[33] |
J. D. Key and B. G. Rodrigues,
Codes from lattice and related graphs, and permutation decoding, Discrete Appl. Math., 158 (2010), 1807-1815.
doi: 10.1016/j.dam.2010.07.003. |
[34] |
J. D. Key and P. Seneviratne,
Binary codes from rectangular lattice graphs and permutation decoding, European J. Combin., 28 (2007), 121-126.
doi: 10.1016/j.ejc.2005.09.001. |
[35] |
J. D. Key and P. Seneviratne,
Permutation decoding for binary codes from lattice graphs, Discrete Math., 308 (2008), 2862-2867.
doi: 10.1016/j.disc.2006.06.049. |
[36] |
W. Knapp and H.-J. Schaeffer, On the codes related to the Higman-Sims graph, Electron. J. Combin., 22 (2015), Paper 1.19, 58 pp. |
[37] |
W. Knapp and P. Schmid,
Codes with prescribed permutation group, J. Algebra, 67 (1980), 415-435.
doi: 10.1016/0021-8693(80)90169-6. |
[38] |
A. Kohnert,
Constructing two-weight codes with prescribed groups of automorphisms, Discrete Appl. Math., 155 (2007), 1451-1457.
doi: 10.1016/j.dam.2007.03.006. |
[39] |
A. Kohnert and A. Wassermann,
Construction of binary and ternary self-orthogonal linear codes, Discrete Appl. Math., 157 (2009), 2118-2123.
doi: 10.1016/j.dam.2007.10.030. |
[40] |
A. Kohnert and J. Zwanzger,
New linear codes with prescribed group of automorphisms found by heuristic search, Adv. Math. Commun., 3 (2009), 157-166.
doi: 10.3934/amc.2009.3.157. |
[41] |
G. Korchmáros and N. Pace,
Infinite family of large complete arcs in $ {\rm{PG}} (2, q^n)$, with $q$ odd and $n>1$ odd, Des. Codes Cryptogr., 55 (2010), 285-296.
doi: 10.1007/s10623-009-9343-6. |
[42] |
H.-J. Kroll and R. Vincenti,
PD-sets for the codes related to some classical varieties, Discrete Math., 301 (2005), 89-105.
doi: 10.1016/j.disc.2004.11.020. |
[43] |
H.-J. Kroll and R. Vincenti,
Antiblocking systems and PD-sets, Discrete Math., 308 (2008), 401-407.
doi: 10.1016/j.disc.2006.11.056. |
[44] |
H.-J. Kroll and R. Vincenti,
PD-sets for binary RM-codes and the codes related to the Klein quadric and to the Schubert variety of $ \rm PG(5, 2)$, Discrete Math., 308 (2008), 408-414.
doi: 10.1016/j.disc.2006.11.057. |
[45] |
F. J. MacWilliams,
Permutation decoding of systematic codes, Bell System Tech. J., 43 (1964), 485-505.
doi: 10.1002/j.1538-7305.1964.tb04075.x. |
[46] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977, North-Holland Mathematical Library, Vol. 16. Google Scholar |
[47] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977, North-Holland Mathematical Library, Vol. 16. |
[48] |
P. M. Neumann,
A lemma that is not Burnside's, Math. Sci., 4 (1979), 133-141.
|
[49] |
N. Pace,
New ternary linear codes from projectivity groups, Discrete Math., 331 (2014), 22-26.
doi: 10.1016/j.disc.2014.04.027. |
[50] |
N. Pace,
On small complete arcs and transitive $A_5$-invariant arcs in the projective plane $PG(2, q)$, J. Combin. Des., 22 (2014), 425-434.
doi: 10.1002/jcd.21372. |
[51] |
N. Pace and A. Sonnino,
On linear codes admitting large automorphism groups, Des. Codes Cryptogr., 83 (2017), 115-143.
doi: 10.1007/s10623-016-0207-6. |
[52] |
B. G. Rodrigues,
Self-orthogonal designs and codes from the symplectic groups $s4(3)$ and $s4(4)$, Discrete Math., 308 (2008), 1941-1950.
doi: 10.1016/j.disc.2007.04.047. |
[53] |
P. Seneviratne,
Codes associated with circulant graphs and permutation decoding, Des. Codes Cryptogr., 70 (2014), 27-33.
doi: 10.1007/s10623-012-9637-y. |
[54] |
A. Sonnino,
Transitive PSL(2, 7)-invariant 42-arcs in 3-dimensional projective spaces, Des. Codes Cryptogr., 72 (2014), 455-463.
doi: 10.1007/s10623-012-9778-z. |
[55] |
B. Stroustrup, The C++ Programming Language, 4th edition, Addison-Wesley, Upper Saddle River, NJ, 2013. Google Scholar |
[56] |
L. M. G. M. Tolhuizen and W. J. van Gils,
A large automorphism group decreases the number of computations in the construction of an optimal encoder/decoder pair for a linear block code, IEEE Trans. Inform. Theory, 34 (1988), 333-338.
doi: 10.1109/18.2646. |
[57] |
J. Wolfmann,
A permutation decoding of the (24, 12, 8) Golay code, IEEE Trans. Inform. Theory, 29 (1983), 748-750.
doi: 10.1109/TIT.1983.1056726. |
[1] |
Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008 |
[2] |
Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021008 |
[3] |
Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020464 |
[4] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[5] |
Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 |
[6] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[7] |
Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046 |
[8] |
Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041 |
[9] |
Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435 |
[10] |
Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020129 |
[11] |
Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044 |
[12] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[13] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[14] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[15] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[16] |
Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083 |
[17] |
He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021 |
[18] |
Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045 |
[19] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[20] |
Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055 |
2019 Impact Factor: 0.734
Tools
Article outline
[Back to Top]