doi: 10.3934/amc.2020067

An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $

1. 

School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255091, China

2. 

Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, China

3. 

School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, Hunan 410114, China

4. 

Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam

5. 

Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

6. 

Department of Mathematics, Dr. SPM IIIT Naya Raipur, Atal Nagar 493661, India

7. 

Chern Institute of Mathematics and LPMC, Nankai University, Tianjin Key Laboratory of Network and Data Security Technology, Tianjin 300071, China

* Corresponding author: Yonglin Cao

Received  June 2019 Revised  October 2019 Published  January 2020

Fund Project: This research is supported in part by National Natural Science Foundation of China (Grant Nos. 11801324, 11671235, 61971243, 61571243), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2018BA007), the Scientific Research Foundation for the PhD of Shandong University of Technology (Grant No. 417037), the Scientific Research Fund of Hubei Provincial Key Laboratory of Applied Mathematics (Hubei University) (Grant Nos. HBAM201906, HBAM201804) and the Scientific Research Fund of Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (No. 2018MMAEZD09) and the Nankai Zhide Foundation.

In this paper, we give an explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over the local non-principal ideal ring $ R = \mathbb{Z}_4+u\mathbb{Z}_4 $ $ (u^2 = 0) $, where $ k, n $ are arbitrary positive integers and $ n $ is odd. In particular, we present all distinct negacyclic codes of length $ 2^k $ over $ R $ precisely. Moreover, we provide an exact mass formula for the number of negacyclic codes of length $ 2^kn $ over $ R $ and correct several mistakes in some literatures.

Citation: Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, doi: 10.3934/amc.2020067
References:
[1]

T. Abualrub and R. Oehmke, On the generators of $\mathbb{Z}_4$ cyclic codes of lenth $2^e$, IEEE Trans. Inform. Theory, 49 (2003), 2126-2133.  doi: 10.1109/TIT.2003.815763.  Google Scholar

[2]

T. Abualrub and I. Siap, Cyclic codes over the ring $\mathbb{Z}_2+u\mathbb{Z}_2$ and $\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2$, Des. Codes Cryptogr., 42 (2007), 273-287.  doi: 10.1007/s10623-006-9034-5.  Google Scholar

[3]

R. Bandi and M. Bhaintwal, Cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, 2015, https://www.researchgate.net/publication/289506486. Google Scholar

[4]

R. BandiM. Bhaintwal and N. Aydin, A mass formula for negacyclic codes of length $2^k$ and some good negacyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, Cryptogr. Commun., 9 (2017), 241-272.  doi: 10.1007/s12095-015-0172-3.  Google Scholar

[5]

T. Blackford, Negacyclic codes over $\mathbb{Z}_4$ of even length, IEEE Trans. Inform. Theory, 49 (2003), 1417-1424.  doi: 10.1109/TIT.2003.811915.  Google Scholar

[6]

Y. Cao, On constacyclic codes over finite chain rings, Finite Fields Appl., 24 (2013), 124-135.  doi: 10.1016/j.ffa.2013.07.001.  Google Scholar

[7]

Y. Cao and Q. Li, Cyclic codes of odd length over $\mathbb{Z}_4[u]/\langle u^k\rangle$, Cryptogr. Commun., 9 (2017), 599-624.  doi: 10.1007/s12095-016-0204-7.  Google Scholar

[8]

Y. CaoY. Cao and F.-W. Fu, Cyclic codes over $\mathbb{F}_{2^m}[u]/\langle u^k \rangle$ of oddly even length, Appl. Algebra in Engrg. Commun. Comput., 27 (2016), 259-277.  doi: 10.1007/s00200-015-0281-4.  Google Scholar

[9]

Y. CaoY. Cao and Q. Li, Concatenated structure of cyclic codes over $\mathbb{Z}_4$ of length $4n$, Appl. Algebra in Engrg. Commun. Comput., 27 (2016), 279-302.  doi: 10.1007/s00200-015-0283-2.  Google Scholar

[10]

Y. CaoY. CaoS. T. Dougherty and S. Ling, Construction and enumeration for self-dual cyclic codes over $\mathbb{Z}_4$ of oddly even length, Des. Codes Cryptogr., 87 (2019), 2419-2446.  doi: 10.1007/s10623-019-00629-6.  Google Scholar

[11]

Y. CaoY. Cao and Q. Li, The concatenated structure of cyclic codes over $\mathbb{Z}_{p^2}$, J. Appl. Math. Comput., 52 (2016), 363-385.  doi: 10.1007/s12190-015-0945-z.  Google Scholar

[12]

Y. Cao and Y. Cao, Negacyclic codes over the local ring $\mathbb{Z}_4[v]/\langle v^2+2v\rangle$ of oddly even length and their Gray images, Finite Fields Appl., 52 (2018), 67-93.  doi: 10.1016/j.ffa.2018.03.005.  Google Scholar

[13]

Y. Cao and Y. Cao, Complete classification for simple root cyclic codes over the local ring $\mathbb{Z}_4[v]/\langle v^2+2v\rangle$, Cryptogr. Commun., (2019), 1-19.  doi: 10.1007/s12095-019-00403-4.  Google Scholar

[14]

Y. Cao and Y. Cao, Complete classification for simple-root cyclic codes over $\mathbb{Z}_{p^s}[v]/\langle v^2-pv\rangle$, 2017, https://www.researchgate.net/publication/320620031. Google Scholar

[15]

Y. CaoY. CaoH. Q. DinhF.-W. FuJ. Gao and S. Sriboonchitta, Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} $, Adv. Math. Commun., 12 (2018), 231-262.  doi: 10.3934/amc.2018016.  Google Scholar

[16]

Y. Cao, Y. Cao, R. Bandi and F.-W. Fu, An explicit representation and enumeration for negacyclic codes of length $2^kn$ over $\mathbb{Z}_4+u\mathbb{Z}_4$, arXiv: 1811.10991 Google Scholar

[17]

H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[18]

H. Q. Dinh, Constacyclic codes of length $p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, J. Algebra, 324 (2010), 940-950.  doi: 10.1016/j.jalgebra.2010.05.027.  Google Scholar

[19]

H. Q. DinhS. Dhompongsa and S. Sriboonchitta, Repeated-root constacyclic codes of prime power length over $\frac{\mathbb{F}_{p^m}[u]}{\langle u^a\rangle}$ and their duals, Discrete Math., 339 (2016), 1706-1715.  doi: 10.1016/j.disc.2016.01.020.  Google Scholar

[20]

S. T. DoughertyJ.-L. KimH. Kulosman and H. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.  doi: 10.1016/j.ffa.2009.11.004.  Google Scholar

[21]

S. T. Dougherty and S. Ling, Cyclic codes over $\mathbb{Z}_4$ of even length, Des. Codes Cryptogr., 39 (2006), 127-153.  doi: 10.1007/s10623-005-2773-x.  Google Scholar

[22]

G. Norton and A. Sǎlǎgean-Mandache, On the structure of linear and cyclic codes over finite chain rings, Appl. Algebra in Engrg. Comm. Comput., 10 (2000), 489-506.  doi: 10.1007/PL00012382.  Google Scholar

[23]

P. Pattanayak and A. K. Singh, A class of cyclic codes cver the ring $\mathbb{Z}_4[u]/\langle u^2\rangle$ and its gray image, arXiv: 1507.04938 Google Scholar

[24]

M. ShiL. Xu and G. Yang, A note on one weight and two weight projective $\mathbb{Z}_4$-codes, IEEE Trans. Inform. Theory, 63 (2017), 177-182.  doi: 10.1109/TIT.2016.2628408.  Google Scholar

[25]

M. ShiL. QianL. SokN. Aydin and P. Solé, On constacyclic codes over $\mathbb{Z}_4[u]/\langle u^2-1\rangle$ and their Gray images, Finite Fields Appl., 45 (2017), 86-95.  doi: 10.1016/j.ffa.2016.11.016.  Google Scholar

[26]

Z.-X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. doi: 10.1142/5350.  Google Scholar

[27]

J. A. Wood, Duality for modules over finite rings and applications to coding theory, American Journal of Mathematics, 121 (1999), 555-575.  doi: 10.1353/ajm.1999.0024.  Google Scholar

[28]

B. Yildiz and S. Karadeniz, Linear codes over $\mathbb{Z}_4+u\mathbb{Z}_4$: MacWilliams identities, projections, and formally self-dual codes, Finite Fields Appl., 27 (2014), 24-40.  doi: 10.1016/j.ffa.2013.12.007.  Google Scholar

[29]

B. Yildiz and N. Aydin, Cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$ and $\mathbb{Z}_4$ images, International Journal of Information and Coding Theory, 2 (2014), 226-237.  doi: 10.1504/IJICOT.2014.066107.  Google Scholar

show all references

References:
[1]

T. Abualrub and R. Oehmke, On the generators of $\mathbb{Z}_4$ cyclic codes of lenth $2^e$, IEEE Trans. Inform. Theory, 49 (2003), 2126-2133.  doi: 10.1109/TIT.2003.815763.  Google Scholar

[2]

T. Abualrub and I. Siap, Cyclic codes over the ring $\mathbb{Z}_2+u\mathbb{Z}_2$ and $\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2$, Des. Codes Cryptogr., 42 (2007), 273-287.  doi: 10.1007/s10623-006-9034-5.  Google Scholar

[3]

R. Bandi and M. Bhaintwal, Cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, 2015, https://www.researchgate.net/publication/289506486. Google Scholar

[4]

R. BandiM. Bhaintwal and N. Aydin, A mass formula for negacyclic codes of length $2^k$ and some good negacyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, Cryptogr. Commun., 9 (2017), 241-272.  doi: 10.1007/s12095-015-0172-3.  Google Scholar

[5]

T. Blackford, Negacyclic codes over $\mathbb{Z}_4$ of even length, IEEE Trans. Inform. Theory, 49 (2003), 1417-1424.  doi: 10.1109/TIT.2003.811915.  Google Scholar

[6]

Y. Cao, On constacyclic codes over finite chain rings, Finite Fields Appl., 24 (2013), 124-135.  doi: 10.1016/j.ffa.2013.07.001.  Google Scholar

[7]

Y. Cao and Q. Li, Cyclic codes of odd length over $\mathbb{Z}_4[u]/\langle u^k\rangle$, Cryptogr. Commun., 9 (2017), 599-624.  doi: 10.1007/s12095-016-0204-7.  Google Scholar

[8]

Y. CaoY. Cao and F.-W. Fu, Cyclic codes over $\mathbb{F}_{2^m}[u]/\langle u^k \rangle$ of oddly even length, Appl. Algebra in Engrg. Commun. Comput., 27 (2016), 259-277.  doi: 10.1007/s00200-015-0281-4.  Google Scholar

[9]

Y. CaoY. Cao and Q. Li, Concatenated structure of cyclic codes over $\mathbb{Z}_4$ of length $4n$, Appl. Algebra in Engrg. Commun. Comput., 27 (2016), 279-302.  doi: 10.1007/s00200-015-0283-2.  Google Scholar

[10]

Y. CaoY. CaoS. T. Dougherty and S. Ling, Construction and enumeration for self-dual cyclic codes over $\mathbb{Z}_4$ of oddly even length, Des. Codes Cryptogr., 87 (2019), 2419-2446.  doi: 10.1007/s10623-019-00629-6.  Google Scholar

[11]

Y. CaoY. Cao and Q. Li, The concatenated structure of cyclic codes over $\mathbb{Z}_{p^2}$, J. Appl. Math. Comput., 52 (2016), 363-385.  doi: 10.1007/s12190-015-0945-z.  Google Scholar

[12]

Y. Cao and Y. Cao, Negacyclic codes over the local ring $\mathbb{Z}_4[v]/\langle v^2+2v\rangle$ of oddly even length and their Gray images, Finite Fields Appl., 52 (2018), 67-93.  doi: 10.1016/j.ffa.2018.03.005.  Google Scholar

[13]

Y. Cao and Y. Cao, Complete classification for simple root cyclic codes over the local ring $\mathbb{Z}_4[v]/\langle v^2+2v\rangle$, Cryptogr. Commun., (2019), 1-19.  doi: 10.1007/s12095-019-00403-4.  Google Scholar

[14]

Y. Cao and Y. Cao, Complete classification for simple-root cyclic codes over $\mathbb{Z}_{p^s}[v]/\langle v^2-pv\rangle$, 2017, https://www.researchgate.net/publication/320620031. Google Scholar

[15]

Y. CaoY. CaoH. Q. DinhF.-W. FuJ. Gao and S. Sriboonchitta, Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} $, Adv. Math. Commun., 12 (2018), 231-262.  doi: 10.3934/amc.2018016.  Google Scholar

[16]

Y. Cao, Y. Cao, R. Bandi and F.-W. Fu, An explicit representation and enumeration for negacyclic codes of length $2^kn$ over $\mathbb{Z}_4+u\mathbb{Z}_4$, arXiv: 1811.10991 Google Scholar

[17]

H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.  doi: 10.1109/TIT.2004.831789.  Google Scholar

[18]

H. Q. Dinh, Constacyclic codes of length $p^s$ over $\mathbb{F}_{p^m}+u \mathbb{F}_{p^m}$, J. Algebra, 324 (2010), 940-950.  doi: 10.1016/j.jalgebra.2010.05.027.  Google Scholar

[19]

H. Q. DinhS. Dhompongsa and S. Sriboonchitta, Repeated-root constacyclic codes of prime power length over $\frac{\mathbb{F}_{p^m}[u]}{\langle u^a\rangle}$ and their duals, Discrete Math., 339 (2016), 1706-1715.  doi: 10.1016/j.disc.2016.01.020.  Google Scholar

[20]

S. T. DoughertyJ.-L. KimH. Kulosman and H. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.  doi: 10.1016/j.ffa.2009.11.004.  Google Scholar

[21]

S. T. Dougherty and S. Ling, Cyclic codes over $\mathbb{Z}_4$ of even length, Des. Codes Cryptogr., 39 (2006), 127-153.  doi: 10.1007/s10623-005-2773-x.  Google Scholar

[22]

G. Norton and A. Sǎlǎgean-Mandache, On the structure of linear and cyclic codes over finite chain rings, Appl. Algebra in Engrg. Comm. Comput., 10 (2000), 489-506.  doi: 10.1007/PL00012382.  Google Scholar

[23]

P. Pattanayak and A. K. Singh, A class of cyclic codes cver the ring $\mathbb{Z}_4[u]/\langle u^2\rangle$ and its gray image, arXiv: 1507.04938 Google Scholar

[24]

M. ShiL. Xu and G. Yang, A note on one weight and two weight projective $\mathbb{Z}_4$-codes, IEEE Trans. Inform. Theory, 63 (2017), 177-182.  doi: 10.1109/TIT.2016.2628408.  Google Scholar

[25]

M. ShiL. QianL. SokN. Aydin and P. Solé, On constacyclic codes over $\mathbb{Z}_4[u]/\langle u^2-1\rangle$ and their Gray images, Finite Fields Appl., 45 (2017), 86-95.  doi: 10.1016/j.ffa.2016.11.016.  Google Scholar

[26]

Z.-X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. doi: 10.1142/5350.  Google Scholar

[27]

J. A. Wood, Duality for modules over finite rings and applications to coding theory, American Journal of Mathematics, 121 (1999), 555-575.  doi: 10.1353/ajm.1999.0024.  Google Scholar

[28]

B. Yildiz and S. Karadeniz, Linear codes over $\mathbb{Z}_4+u\mathbb{Z}_4$: MacWilliams identities, projections, and formally self-dual codes, Finite Fields Appl., 27 (2014), 24-40.  doi: 10.1016/j.ffa.2013.12.007.  Google Scholar

[29]

B. Yildiz and N. Aydin, Cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$ and $\mathbb{Z}_4$ images, International Journal of Information and Coding Theory, 2 (2014), 226-237.  doi: 10.1504/IJICOT.2014.066107.  Google Scholar

[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[5]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[6]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[7]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[8]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[9]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (76)
  • HTML views (400)
  • Cited by (1)

[Back to Top]