May  2021, 15(2): 329-346. doi: 10.3934/amc.2020069

A note on generalization of bent boolean functions

1. 

CARAMBA, INRIA Nancy-Grand Est., 54600, France

2. 

Department of Mathematics, Indian Institute of Technology Roorkee, 247667, India

* Corresponding author: Aditi Kar Gangopadhyay

Received  April 2019 Revised  February 2020 Published  April 2020

Suppose that $ \mu_p $ is a probability measure defined on the input space of Boolean functions. We consider a generalization of Walsh–Hadamard transform on Boolean functions to $ \mu_p $-Walsh–Hadamard transforms. In this paper, first, we derive the properties of $ \mu_p $-Walsh–Hadamard transformation for some classes of Boolean functions and specify a class of nonsingular affine transformations that preserve the $ \mu_p $-bent property. We further derive the results on $ \mu_p $-Walsh–Hadamard transform of concatenation of Boolean functions and provide some secondary constructions of $ \mu_p $-bent functions. Finally, we discuss the $ \mu_p $-bentness for Maiorana–McFarland class of bent functions.

Citation: Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069
References:
[1]

A. CanteautS. CarpovC. FontaineT. LepointM. Naya-PlasenciaP. Paillier and R. Sirdey, Stream ciphers: A practical solution for efficient homomorphic-ciphertext compression, Journal of Cryptology, 31 (2018), 885-916.  doi: 10.1007/s00145-017-9273-9.  Google Scholar

[2]

C. CarletP. Méaux and Y. Rotella, Boolean functions with restricted input and their robustness, application to the FLIP cipher, IACR Transactions on Symmetric Cryptology, 3 (2017), 192-227.   Google Scholar

[3] T. W. Cusick and P. Stǎnicǎ, Cryptographic Boolean Functions and Applications, 2nd Edition, Elsevier-Academic Press, London, 2017.   Google Scholar
[4]

J. F. Dillon, Elementary Hadamard difference sets, Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, Utilitas Math., Winnipeg, Man., (1975), 237-249.   Google Scholar

[5]

H. Dobbertin, Construction of bent functions and balanced Boolean functions with high nonlinearity, Fast Software Encryption (FSE 1994), LNCS, Springer-Verlag, (1995), 61-74.  doi: 10.1007/3-540-60590-8_5.  Google Scholar

[6]

P. Erdös and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl, 5 (1960), 17-61.   Google Scholar

[7]

S. GangopadhyayA. K. GangopadhyayS. Pollatos and P. Stǎnicǎ, Cryptographic Boolean functions with biased inputs, Cryptography and Communications, 9 (2017), 301-314.  doi: 10.1007/s12095-015-0174-1.  Google Scholar

[8]

S. GangopadhyayG. PaulN. Sinha and P. Stǎnicǎ, Generalized nonlinearity of $S$-boxes, Advances in Mathematics of Communications, 12 (2018), 115-122.  doi: 10.3934/amc.2018007.  Google Scholar

[9]

H. Hatami, A remark on Bourgain's distributional inequality on the Fourier spectrum of Boolean functions, Online Journal of Analytic Combinatorics, (2006), Art. 3, 6 pp.  Google Scholar

[10]

M. HeidariS. S. Pradhan and R. Venkataramanan, Boolean functions with biased inputs: Approximation and noise sensitivity, IEEE International Symposium on Information Theory (ISIT), (2019), 1192-1196.  doi: 10.1109/ISIT.2019.8849233.  Google Scholar

[11]

S. KavutS. Maitra and D. Tang, Construction and search of balanced Boolean functions on even number of variables towards excellent autocorrelation profile, Designs, Codes and Cryptography, 87 (2019), 261-276.  doi: 10.1007/s10623-018-0522-1.  Google Scholar

[12]

M. KhairallahA. ChattopadhyayB. Mandal and S. Maitra, On hardware implementation of Tang-Maitra Boolean functions, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 11321 (2018), 111-127.  doi: 10.1007/978-3-030-05153-2_6.  Google Scholar

[13]

Y. Lu and Y. Desmedt, Bias analysis of a certain problem with applications to $E_0$ and Shannon ciper, Information Security and Cryptology—ICISC 2010, Lecture Notes in Comput. Sci., Springer, Heidelberg, 6829 (2011), 16-28.  doi: 10.1007/978-3-642-24209-0_2.  Google Scholar

[14]

B. Mandal, S. Maitra and P. Stǎnicǎ, On the existence and non-existence of some classes of bent-negabent functions, submitted. Google Scholar

[15]

S. MaitraB. MandalT. MartinsenD. Roy and P. Stǎnicǎ, Tools in analyzing linear approximation for Boolean functions related to FLIP, Progress in Cryptology—INDOCRYPT 2018, Lecture Notes in Comput. Sci., Springer, Cham, 11356 (2018), 282-303.  doi: 10.1007/978-3-030-05378-9_16.  Google Scholar

[16]

S. MaitraB. MandalT. MartinsenD. Roy and P. Stǎnicǎ, Analysis on Boolean function in a restricted (biased) domain, IEEE Transactions on Information Theory, 66 (2020), 1219-1231.  doi: 10.1109/TIT.2019.2932739.  Google Scholar

[17]

R. L. McFarland, A family of noncyclic difference sets, Journal of Combinatorial Theory, Series A, 15 (1973), 1-10.   Google Scholar

[18]

S. MesnagerZ. C. Zhou and C. S. Ding, On the nonlinearity of Boolean functions with restricted input, Cryptography and Communications, 11 (2019), 63-76.  doi: 10.1007/s12095-018-0293-6.  Google Scholar

[19]

S. Mesnager, Bent Functions, Fundamentals and Results, Springer, [Cham], 2016. doi: 10.1007/978-3-319-32595-8.  Google Scholar

[20]

A. Montanaro and T. J. Osborne, Quantum Boolean functions, Chicago J. Theor. Comput. Sci., (2010), Art 1, 45 pp. doi: 10.4086/cjtcs.2010.001.  Google Scholar

[21] R. O'Donnell, Analysis of Boolean Functions, Cambridge University Press, New York, 2014.  doi: 10.1017/CBO9781139814782.  Google Scholar
[22]

M. G. Parker, Generalised S-Box Nonlinearity, NESSIE Public Document, 11.02.03: NES/DOC/UIB/WP5/020/A. Google Scholar

[23]

M. G. Parker, The constabent properties of Goley-Devis-Jedwab sequences, Int. Symp. Information Theory, Sorrento, Italy, (2000). Google Scholar

[24]

C. Riera and M. G. Parker, Generalized bent criteria for Boolean functions. Ⅰ, IEEE Transactions on Information Theory, 52 (2006), 4142-4159.  doi: 10.1109/TIT.2006.880069.  Google Scholar

[25]

O. S. Rothaus, On "bent" functions, Journal of Combinatorial Theory, Series A, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.  Google Scholar

[26]

K.-U. SchmidtM. G. Parker and A. Pott, Negabent functions in Maiorana-McFarland class, equences and Their Applications—SETA 2008, Lecture Notes in Comput. Sci., Springer, Berlin, 5203 (2008), 390-402.  doi: 10.1007/978-3-540-85912-3_34.  Google Scholar

[27]

P. StǎnicǎS. GangopadhyayA. ChaturvediA. K. Gangopadhyay and S. Maitra, Investigations on bent and negabent function via nega-Hadamard transform, IEEE Transactions on Information Theory, 58 (2012), 4064-4072.  doi: 10.1109/TIT.2012.2186785.  Google Scholar

[28]

D. Tang and S. Maitra, Constructions of $n$-variable ($n\equiv 2 \bmod 4$) balanced Boolean functions with maximum absolute value in autocorrelation spectra $<2^{\frac{n}{2}}$, IEEE Transactions on Information Theory, 64 (2018), 393-402.  doi: 10.1109/TIT.2017.2769092.  Google Scholar

[29]

D. TangS. KavutB. Mandal and S. Maitra, Modifying Maiorana-McFarland type bent functions for good cryptographic properties and efficient implementation, SIAM Journal on Discrete Mathematics, 33 (2019), 238-256.  doi: 10.1137/18M1202864.  Google Scholar

show all references

References:
[1]

A. CanteautS. CarpovC. FontaineT. LepointM. Naya-PlasenciaP. Paillier and R. Sirdey, Stream ciphers: A practical solution for efficient homomorphic-ciphertext compression, Journal of Cryptology, 31 (2018), 885-916.  doi: 10.1007/s00145-017-9273-9.  Google Scholar

[2]

C. CarletP. Méaux and Y. Rotella, Boolean functions with restricted input and their robustness, application to the FLIP cipher, IACR Transactions on Symmetric Cryptology, 3 (2017), 192-227.   Google Scholar

[3] T. W. Cusick and P. Stǎnicǎ, Cryptographic Boolean Functions and Applications, 2nd Edition, Elsevier-Academic Press, London, 2017.   Google Scholar
[4]

J. F. Dillon, Elementary Hadamard difference sets, Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, Utilitas Math., Winnipeg, Man., (1975), 237-249.   Google Scholar

[5]

H. Dobbertin, Construction of bent functions and balanced Boolean functions with high nonlinearity, Fast Software Encryption (FSE 1994), LNCS, Springer-Verlag, (1995), 61-74.  doi: 10.1007/3-540-60590-8_5.  Google Scholar

[6]

P. Erdös and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl, 5 (1960), 17-61.   Google Scholar

[7]

S. GangopadhyayA. K. GangopadhyayS. Pollatos and P. Stǎnicǎ, Cryptographic Boolean functions with biased inputs, Cryptography and Communications, 9 (2017), 301-314.  doi: 10.1007/s12095-015-0174-1.  Google Scholar

[8]

S. GangopadhyayG. PaulN. Sinha and P. Stǎnicǎ, Generalized nonlinearity of $S$-boxes, Advances in Mathematics of Communications, 12 (2018), 115-122.  doi: 10.3934/amc.2018007.  Google Scholar

[9]

H. Hatami, A remark on Bourgain's distributional inequality on the Fourier spectrum of Boolean functions, Online Journal of Analytic Combinatorics, (2006), Art. 3, 6 pp.  Google Scholar

[10]

M. HeidariS. S. Pradhan and R. Venkataramanan, Boolean functions with biased inputs: Approximation and noise sensitivity, IEEE International Symposium on Information Theory (ISIT), (2019), 1192-1196.  doi: 10.1109/ISIT.2019.8849233.  Google Scholar

[11]

S. KavutS. Maitra and D. Tang, Construction and search of balanced Boolean functions on even number of variables towards excellent autocorrelation profile, Designs, Codes and Cryptography, 87 (2019), 261-276.  doi: 10.1007/s10623-018-0522-1.  Google Scholar

[12]

M. KhairallahA. ChattopadhyayB. Mandal and S. Maitra, On hardware implementation of Tang-Maitra Boolean functions, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 11321 (2018), 111-127.  doi: 10.1007/978-3-030-05153-2_6.  Google Scholar

[13]

Y. Lu and Y. Desmedt, Bias analysis of a certain problem with applications to $E_0$ and Shannon ciper, Information Security and Cryptology—ICISC 2010, Lecture Notes in Comput. Sci., Springer, Heidelberg, 6829 (2011), 16-28.  doi: 10.1007/978-3-642-24209-0_2.  Google Scholar

[14]

B. Mandal, S. Maitra and P. Stǎnicǎ, On the existence and non-existence of some classes of bent-negabent functions, submitted. Google Scholar

[15]

S. MaitraB. MandalT. MartinsenD. Roy and P. Stǎnicǎ, Tools in analyzing linear approximation for Boolean functions related to FLIP, Progress in Cryptology—INDOCRYPT 2018, Lecture Notes in Comput. Sci., Springer, Cham, 11356 (2018), 282-303.  doi: 10.1007/978-3-030-05378-9_16.  Google Scholar

[16]

S. MaitraB. MandalT. MartinsenD. Roy and P. Stǎnicǎ, Analysis on Boolean function in a restricted (biased) domain, IEEE Transactions on Information Theory, 66 (2020), 1219-1231.  doi: 10.1109/TIT.2019.2932739.  Google Scholar

[17]

R. L. McFarland, A family of noncyclic difference sets, Journal of Combinatorial Theory, Series A, 15 (1973), 1-10.   Google Scholar

[18]

S. MesnagerZ. C. Zhou and C. S. Ding, On the nonlinearity of Boolean functions with restricted input, Cryptography and Communications, 11 (2019), 63-76.  doi: 10.1007/s12095-018-0293-6.  Google Scholar

[19]

S. Mesnager, Bent Functions, Fundamentals and Results, Springer, [Cham], 2016. doi: 10.1007/978-3-319-32595-8.  Google Scholar

[20]

A. Montanaro and T. J. Osborne, Quantum Boolean functions, Chicago J. Theor. Comput. Sci., (2010), Art 1, 45 pp. doi: 10.4086/cjtcs.2010.001.  Google Scholar

[21] R. O'Donnell, Analysis of Boolean Functions, Cambridge University Press, New York, 2014.  doi: 10.1017/CBO9781139814782.  Google Scholar
[22]

M. G. Parker, Generalised S-Box Nonlinearity, NESSIE Public Document, 11.02.03: NES/DOC/UIB/WP5/020/A. Google Scholar

[23]

M. G. Parker, The constabent properties of Goley-Devis-Jedwab sequences, Int. Symp. Information Theory, Sorrento, Italy, (2000). Google Scholar

[24]

C. Riera and M. G. Parker, Generalized bent criteria for Boolean functions. Ⅰ, IEEE Transactions on Information Theory, 52 (2006), 4142-4159.  doi: 10.1109/TIT.2006.880069.  Google Scholar

[25]

O. S. Rothaus, On "bent" functions, Journal of Combinatorial Theory, Series A, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.  Google Scholar

[26]

K.-U. SchmidtM. G. Parker and A. Pott, Negabent functions in Maiorana-McFarland class, equences and Their Applications—SETA 2008, Lecture Notes in Comput. Sci., Springer, Berlin, 5203 (2008), 390-402.  doi: 10.1007/978-3-540-85912-3_34.  Google Scholar

[27]

P. StǎnicǎS. GangopadhyayA. ChaturvediA. K. Gangopadhyay and S. Maitra, Investigations on bent and negabent function via nega-Hadamard transform, IEEE Transactions on Information Theory, 58 (2012), 4064-4072.  doi: 10.1109/TIT.2012.2186785.  Google Scholar

[28]

D. Tang and S. Maitra, Constructions of $n$-variable ($n\equiv 2 \bmod 4$) balanced Boolean functions with maximum absolute value in autocorrelation spectra $<2^{\frac{n}{2}}$, IEEE Transactions on Information Theory, 64 (2018), 393-402.  doi: 10.1109/TIT.2017.2769092.  Google Scholar

[29]

D. TangS. KavutB. Mandal and S. Maitra, Modifying Maiorana-McFarland type bent functions for good cryptographic properties and efficient implementation, SIAM Journal on Discrete Mathematics, 33 (2019), 238-256.  doi: 10.1137/18M1202864.  Google Scholar

[1]

Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2021, 15 (1) : 55-64. doi: 10.3934/amc.2020042

[2]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[3]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020121

[4]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[5]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[6]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021004

[7]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[8]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[9]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[10]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[11]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[12]

Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020119

[13]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[14]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[15]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[18]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[19]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[20]

Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (104)
  • HTML views (412)
  • Cited by (0)

Other articles
by authors

[Back to Top]