doi: 10.3934/amc.2020069

A note on generalization of bent boolean functions

1. 

CARAMBA, INRIA Nancy-Grand Est., 54600, France

2. 

Department of Mathematics, Indian Institute of Technology Roorkee, 247667, India

* Corresponding author: Aditi Kar Gangopadhyay

Received  April 2019 Revised  February 2020 Published  April 2020

Suppose that $ \mu_p $ is a probability measure defined on the input space of Boolean functions. We consider a generalization of Walsh–Hadamard transform on Boolean functions to $ \mu_p $-Walsh–Hadamard transforms. In this paper, first, we derive the properties of $ \mu_p $-Walsh–Hadamard transformation for some classes of Boolean functions and specify a class of nonsingular affine transformations that preserve the $ \mu_p $-bent property. We further derive the results on $ \mu_p $-Walsh–Hadamard transform of concatenation of Boolean functions and provide some secondary constructions of $ \mu_p $-bent functions. Finally, we discuss the $ \mu_p $-bentness for Maiorana–McFarland class of bent functions.

Citation: Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, doi: 10.3934/amc.2020069
References:
[1]

A. CanteautS. CarpovC. FontaineT. LepointM. Naya-PlasenciaP. Paillier and R. Sirdey, Stream ciphers: A practical solution for efficient homomorphic-ciphertext compression, Journal of Cryptology, 31 (2018), 885-916.  doi: 10.1007/s00145-017-9273-9.  Google Scholar

[2]

C. CarletP. Méaux and Y. Rotella, Boolean functions with restricted input and their robustness, application to the FLIP cipher, IACR Transactions on Symmetric Cryptology, 3 (2017), 192-227.   Google Scholar

[3] T. W. Cusick and P. Stǎnicǎ, Cryptographic Boolean Functions and Applications, 2nd Edition, Elsevier-Academic Press, London, 2017.   Google Scholar
[4]

J. F. Dillon, Elementary Hadamard difference sets, Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, Utilitas Math., Winnipeg, Man., (1975), 237-249.   Google Scholar

[5]

H. Dobbertin, Construction of bent functions and balanced Boolean functions with high nonlinearity, Fast Software Encryption (FSE 1994), LNCS, Springer-Verlag, (1995), 61-74.  doi: 10.1007/3-540-60590-8_5.  Google Scholar

[6]

P. Erdös and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl, 5 (1960), 17-61.   Google Scholar

[7]

S. GangopadhyayA. K. GangopadhyayS. Pollatos and P. Stǎnicǎ, Cryptographic Boolean functions with biased inputs, Cryptography and Communications, 9 (2017), 301-314.  doi: 10.1007/s12095-015-0174-1.  Google Scholar

[8]

S. GangopadhyayG. PaulN. Sinha and P. Stǎnicǎ, Generalized nonlinearity of $S$-boxes, Advances in Mathematics of Communications, 12 (2018), 115-122.  doi: 10.3934/amc.2018007.  Google Scholar

[9]

H. Hatami, A remark on Bourgain's distributional inequality on the Fourier spectrum of Boolean functions, Online Journal of Analytic Combinatorics, (2006), Art. 3, 6 pp.  Google Scholar

[10]

M. HeidariS. S. Pradhan and R. Venkataramanan, Boolean functions with biased inputs: Approximation and noise sensitivity, IEEE International Symposium on Information Theory (ISIT), (2019), 1192-1196.  doi: 10.1109/ISIT.2019.8849233.  Google Scholar

[11]

S. KavutS. Maitra and D. Tang, Construction and search of balanced Boolean functions on even number of variables towards excellent autocorrelation profile, Designs, Codes and Cryptography, 87 (2019), 261-276.  doi: 10.1007/s10623-018-0522-1.  Google Scholar

[12]

M. KhairallahA. ChattopadhyayB. Mandal and S. Maitra, On hardware implementation of Tang-Maitra Boolean functions, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 11321 (2018), 111-127.  doi: 10.1007/978-3-030-05153-2_6.  Google Scholar

[13]

Y. Lu and Y. Desmedt, Bias analysis of a certain problem with applications to $E_0$ and Shannon ciper, Information Security and Cryptology—ICISC 2010, Lecture Notes in Comput. Sci., Springer, Heidelberg, 6829 (2011), 16-28.  doi: 10.1007/978-3-642-24209-0_2.  Google Scholar

[14]

B. Mandal, S. Maitra and P. Stǎnicǎ, On the existence and non-existence of some classes of bent-negabent functions, submitted. Google Scholar

[15]

S. MaitraB. MandalT. MartinsenD. Roy and P. Stǎnicǎ, Tools in analyzing linear approximation for Boolean functions related to FLIP, Progress in Cryptology—INDOCRYPT 2018, Lecture Notes in Comput. Sci., Springer, Cham, 11356 (2018), 282-303.  doi: 10.1007/978-3-030-05378-9_16.  Google Scholar

[16]

S. MaitraB. MandalT. MartinsenD. Roy and P. Stǎnicǎ, Analysis on Boolean function in a restricted (biased) domain, IEEE Transactions on Information Theory, 66 (2020), 1219-1231.  doi: 10.1109/TIT.2019.2932739.  Google Scholar

[17]

R. L. McFarland, A family of noncyclic difference sets, Journal of Combinatorial Theory, Series A, 15 (1973), 1-10.   Google Scholar

[18]

S. MesnagerZ. C. Zhou and C. S. Ding, On the nonlinearity of Boolean functions with restricted input, Cryptography and Communications, 11 (2019), 63-76.  doi: 10.1007/s12095-018-0293-6.  Google Scholar

[19]

S. Mesnager, Bent Functions, Fundamentals and Results, Springer, [Cham], 2016. doi: 10.1007/978-3-319-32595-8.  Google Scholar

[20]

A. Montanaro and T. J. Osborne, Quantum Boolean functions, Chicago J. Theor. Comput. Sci., (2010), Art 1, 45 pp. doi: 10.4086/cjtcs.2010.001.  Google Scholar

[21] R. O'Donnell, Analysis of Boolean Functions, Cambridge University Press, New York, 2014.  doi: 10.1017/CBO9781139814782.  Google Scholar
[22]

M. G. Parker, Generalised S-Box Nonlinearity, NESSIE Public Document, 11.02.03: NES/DOC/UIB/WP5/020/A. Google Scholar

[23]

M. G. Parker, The constabent properties of Goley-Devis-Jedwab sequences, Int. Symp. Information Theory, Sorrento, Italy, (2000). Google Scholar

[24]

C. Riera and M. G. Parker, Generalized bent criteria for Boolean functions. Ⅰ, IEEE Transactions on Information Theory, 52 (2006), 4142-4159.  doi: 10.1109/TIT.2006.880069.  Google Scholar

[25]

O. S. Rothaus, On "bent" functions, Journal of Combinatorial Theory, Series A, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.  Google Scholar

[26]

K.-U. SchmidtM. G. Parker and A. Pott, Negabent functions in Maiorana-McFarland class, equences and Their Applications—SETA 2008, Lecture Notes in Comput. Sci., Springer, Berlin, 5203 (2008), 390-402.  doi: 10.1007/978-3-540-85912-3_34.  Google Scholar

[27]

P. StǎnicǎS. GangopadhyayA. ChaturvediA. K. Gangopadhyay and S. Maitra, Investigations on bent and negabent function via nega-Hadamard transform, IEEE Transactions on Information Theory, 58 (2012), 4064-4072.  doi: 10.1109/TIT.2012.2186785.  Google Scholar

[28]

D. Tang and S. Maitra, Constructions of $n$-variable ($n\equiv 2 \bmod 4$) balanced Boolean functions with maximum absolute value in autocorrelation spectra $<2^{\frac{n}{2}}$, IEEE Transactions on Information Theory, 64 (2018), 393-402.  doi: 10.1109/TIT.2017.2769092.  Google Scholar

[29]

D. TangS. KavutB. Mandal and S. Maitra, Modifying Maiorana-McFarland type bent functions for good cryptographic properties and efficient implementation, SIAM Journal on Discrete Mathematics, 33 (2019), 238-256.  doi: 10.1137/18M1202864.  Google Scholar

show all references

References:
[1]

A. CanteautS. CarpovC. FontaineT. LepointM. Naya-PlasenciaP. Paillier and R. Sirdey, Stream ciphers: A practical solution for efficient homomorphic-ciphertext compression, Journal of Cryptology, 31 (2018), 885-916.  doi: 10.1007/s00145-017-9273-9.  Google Scholar

[2]

C. CarletP. Méaux and Y. Rotella, Boolean functions with restricted input and their robustness, application to the FLIP cipher, IACR Transactions on Symmetric Cryptology, 3 (2017), 192-227.   Google Scholar

[3] T. W. Cusick and P. Stǎnicǎ, Cryptographic Boolean Functions and Applications, 2nd Edition, Elsevier-Academic Press, London, 2017.   Google Scholar
[4]

J. F. Dillon, Elementary Hadamard difference sets, Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, Utilitas Math., Winnipeg, Man., (1975), 237-249.   Google Scholar

[5]

H. Dobbertin, Construction of bent functions and balanced Boolean functions with high nonlinearity, Fast Software Encryption (FSE 1994), LNCS, Springer-Verlag, (1995), 61-74.  doi: 10.1007/3-540-60590-8_5.  Google Scholar

[6]

P. Erdös and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl, 5 (1960), 17-61.   Google Scholar

[7]

S. GangopadhyayA. K. GangopadhyayS. Pollatos and P. Stǎnicǎ, Cryptographic Boolean functions with biased inputs, Cryptography and Communications, 9 (2017), 301-314.  doi: 10.1007/s12095-015-0174-1.  Google Scholar

[8]

S. GangopadhyayG. PaulN. Sinha and P. Stǎnicǎ, Generalized nonlinearity of $S$-boxes, Advances in Mathematics of Communications, 12 (2018), 115-122.  doi: 10.3934/amc.2018007.  Google Scholar

[9]

H. Hatami, A remark on Bourgain's distributional inequality on the Fourier spectrum of Boolean functions, Online Journal of Analytic Combinatorics, (2006), Art. 3, 6 pp.  Google Scholar

[10]

M. HeidariS. S. Pradhan and R. Venkataramanan, Boolean functions with biased inputs: Approximation and noise sensitivity, IEEE International Symposium on Information Theory (ISIT), (2019), 1192-1196.  doi: 10.1109/ISIT.2019.8849233.  Google Scholar

[11]

S. KavutS. Maitra and D. Tang, Construction and search of balanced Boolean functions on even number of variables towards excellent autocorrelation profile, Designs, Codes and Cryptography, 87 (2019), 261-276.  doi: 10.1007/s10623-018-0522-1.  Google Scholar

[12]

M. KhairallahA. ChattopadhyayB. Mandal and S. Maitra, On hardware implementation of Tang-Maitra Boolean functions, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Cham, 11321 (2018), 111-127.  doi: 10.1007/978-3-030-05153-2_6.  Google Scholar

[13]

Y. Lu and Y. Desmedt, Bias analysis of a certain problem with applications to $E_0$ and Shannon ciper, Information Security and Cryptology—ICISC 2010, Lecture Notes in Comput. Sci., Springer, Heidelberg, 6829 (2011), 16-28.  doi: 10.1007/978-3-642-24209-0_2.  Google Scholar

[14]

B. Mandal, S. Maitra and P. Stǎnicǎ, On the existence and non-existence of some classes of bent-negabent functions, submitted. Google Scholar

[15]

S. MaitraB. MandalT. MartinsenD. Roy and P. Stǎnicǎ, Tools in analyzing linear approximation for Boolean functions related to FLIP, Progress in Cryptology—INDOCRYPT 2018, Lecture Notes in Comput. Sci., Springer, Cham, 11356 (2018), 282-303.  doi: 10.1007/978-3-030-05378-9_16.  Google Scholar

[16]

S. MaitraB. MandalT. MartinsenD. Roy and P. Stǎnicǎ, Analysis on Boolean function in a restricted (biased) domain, IEEE Transactions on Information Theory, 66 (2020), 1219-1231.  doi: 10.1109/TIT.2019.2932739.  Google Scholar

[17]

R. L. McFarland, A family of noncyclic difference sets, Journal of Combinatorial Theory, Series A, 15 (1973), 1-10.   Google Scholar

[18]

S. MesnagerZ. C. Zhou and C. S. Ding, On the nonlinearity of Boolean functions with restricted input, Cryptography and Communications, 11 (2019), 63-76.  doi: 10.1007/s12095-018-0293-6.  Google Scholar

[19]

S. Mesnager, Bent Functions, Fundamentals and Results, Springer, [Cham], 2016. doi: 10.1007/978-3-319-32595-8.  Google Scholar

[20]

A. Montanaro and T. J. Osborne, Quantum Boolean functions, Chicago J. Theor. Comput. Sci., (2010), Art 1, 45 pp. doi: 10.4086/cjtcs.2010.001.  Google Scholar

[21] R. O'Donnell, Analysis of Boolean Functions, Cambridge University Press, New York, 2014.  doi: 10.1017/CBO9781139814782.  Google Scholar
[22]

M. G. Parker, Generalised S-Box Nonlinearity, NESSIE Public Document, 11.02.03: NES/DOC/UIB/WP5/020/A. Google Scholar

[23]

M. G. Parker, The constabent properties of Goley-Devis-Jedwab sequences, Int. Symp. Information Theory, Sorrento, Italy, (2000). Google Scholar

[24]

C. Riera and M. G. Parker, Generalized bent criteria for Boolean functions. Ⅰ, IEEE Transactions on Information Theory, 52 (2006), 4142-4159.  doi: 10.1109/TIT.2006.880069.  Google Scholar

[25]

O. S. Rothaus, On "bent" functions, Journal of Combinatorial Theory, Series A, 20 (1976), 300-305.  doi: 10.1016/0097-3165(76)90024-8.  Google Scholar

[26]

K.-U. SchmidtM. G. Parker and A. Pott, Negabent functions in Maiorana-McFarland class, equences and Their Applications—SETA 2008, Lecture Notes in Comput. Sci., Springer, Berlin, 5203 (2008), 390-402.  doi: 10.1007/978-3-540-85912-3_34.  Google Scholar

[27]

P. StǎnicǎS. GangopadhyayA. ChaturvediA. K. Gangopadhyay and S. Maitra, Investigations on bent and negabent function via nega-Hadamard transform, IEEE Transactions on Information Theory, 58 (2012), 4064-4072.  doi: 10.1109/TIT.2012.2186785.  Google Scholar

[28]

D. Tang and S. Maitra, Constructions of $n$-variable ($n\equiv 2 \bmod 4$) balanced Boolean functions with maximum absolute value in autocorrelation spectra $<2^{\frac{n}{2}}$, IEEE Transactions on Information Theory, 64 (2018), 393-402.  doi: 10.1109/TIT.2017.2769092.  Google Scholar

[29]

D. TangS. KavutB. Mandal and S. Maitra, Modifying Maiorana-McFarland type bent functions for good cryptographic properties and efficient implementation, SIAM Journal on Discrete Mathematics, 33 (2019), 238-256.  doi: 10.1137/18M1202864.  Google Scholar

[1]

Tingting Pang, Nian Li, Li Zhang, Xiangyong Zeng. Several new classes of (balanced) Boolean functions with few Walsh transform values. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020095

[2]

Li Zhang, Xiaofeng Zhou, Min Chen. The research on the properties of Fourier matrix and bent function. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 571-578. doi: 10.3934/naco.2020052

[3]

Na Zhao, Zheng-Hai Huang. A nonmonotone smoothing Newton algorithm for solving box constrained variational inequalities with a $P_0$ function. Journal of Industrial & Management Optimization, 2011, 7 (2) : 467-482. doi: 10.3934/jimo.2011.7.467

[4]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[5]

Hideshi Yamane. Local and global analyticity for $\mu$-Camassa-Holm equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4307-4340. doi: 10.3934/dcds.2020182

[6]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems & Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[7]

Yanfeng Qi, Chunming Tang, Zhengchun Zhou, Cuiling Fan. Several infinite families of p-ary weakly regular bent functions. Advances in Mathematics of Communications, 2018, 12 (2) : 303-315. doi: 10.3934/amc.2018019

[8]

Yingying Li, Ying Fu, Changzheng Qu. The two-component $ \mu $-Camassa–Holm system with peaked solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (10) : 5929-5954. doi: 10.3934/dcds.2020253

[9]

Jingqun Wang, Lixin Tian, Weiwei Guo. Global exact controllability and asympotic stabilization of the periodic two-component $\mu\rho$-Hunter-Saxton system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2129-2148. doi: 10.3934/dcdss.2016088

[10]

Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2019  doi: 10.3934/amc.2020042

[11]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[12]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[13]

H. N. Mhaskar, T. Poggio. Function approximation by deep networks. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4085-4095. doi: 10.3934/cpaa.2020181

[14]

Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669

[15]

Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42.

[16]

Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741

[17]

Giovanni Colombo, Khai T. Nguyen. On the minimum time function around the origin. Mathematical Control & Related Fields, 2013, 3 (1) : 51-82. doi: 10.3934/mcrf.2013.3.51

[18]

Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475

[19]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control & Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[20]

Todd Kapitula, Björn Sandstede. Eigenvalues and resonances using the Evans function. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 857-869. doi: 10.3934/dcds.2004.10.857

2019 Impact Factor: 0.734

Article outline

[Back to Top]