• Previous Article
    Internal state recovery of Espresso stream cipher using conditional sampling resistance and TMDTO attack
  • AMC Home
  • This Issue
  • Next Article
    New self-dual codes of length 68 from a $ 2 \times 2 $ block matrix construction and group rings
doi: 10.3934/amc.2020072

Some optimal cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^t} $-codes

1. 

College of Applied Sciences, Beijing University of Technology, Beijing 100124, China

2. 

Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

* Corresponding author: Yun Gao

Received  September 2019 Revised  December 2019 Published  April 2020

Fund Project: The authors would like to thank the anonymous reviewers and the Associate Editor for their valuable suggestions and comments that helped to greatly improve the paper. This research is supported by the 973 Program of China (Grant No. 2013CB834204), the National Natural Science Foundation of China (Grant No. 11671024, 61571243), and the Fundamental Research Funds for the Central Universities of China

Let $ \mathbb{F}_{q^t} $ be a finite field of cardinality $ q^t $, where $ q $ is a power of a prime number $ p $ and $ t\geq 1 $ is a positive integer. Firstly, a family of cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^t} $-codes of length $ n $ is given, where $ n $ is a positive integer coprime to $ q $. Then according to the structure of this kind of codes, we construct $ 60 $ optimal cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^2} $-codes which have the same parameters as the MDS codes over $ \mathbb{F}_{q^2} $.

Citation: Yun Gao, Shilin Yang, Fang-Wei Fu. Some optimal cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^t} $-codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2020072
References:
[1]

T. L. Alderson, Extending MDS codes, Ann. Comb., 9 (2005), 125-135.  doi: 10.1007/s00026-005-0245-7.  Google Scholar

[2]

I. Bouyukliev and J. Simonis, Some new results on optimal codes over $\mathbb{F}_5$, Des. Codes Cryptogr., 30 (2003), 97-111.  doi: 10.1023/A:1024763410967.  Google Scholar

[3]

S. Bouyuklieva and P. R. J. Östergảrd, New constructions of optimal self-dual binary codes of length 54, Des. Codes Cryptogr., 41 (2006), 101-109.  doi: 10.1007/s10623-006-0018-2.  Google Scholar

[4]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system, J. Symb. Comput., 24 (1997), 235-265.   Google Scholar

[5]

Y. L. Cao and Y. Gao, Repeated root cyclic $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Finite Fields Appl., 31 (2015), 202-227.  doi: 10.1016/j.ffa.2014.10.003.  Google Scholar

[6]

Y. L. CaoX. X. Chang and Y. Cao, Constacyclic $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Appl. Algebra Engrg. Comm. Comput., 26 (2015), 369-388.  doi: 10.1007/s00200-015-0257-4.  Google Scholar

[7]

Y. L. CaoJ. Gao and F.-W. Fu, Semisimple multivariable $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Des. Codes Cryptogr., 77 (2015), 153-177.  doi: 10.1007/s10623-014-9994-9.  Google Scholar

[8]

B. C. Chen and H. W. Liu, New constructions of MDS codes with complementary duals, IEEE Trans. Inform. Theory, 64 (2018), 5776-5782.  doi: 10.1109/TIT.2017.2748955.  Google Scholar

[9]

B. K. Dey and B. S. Rajan, $\mathbb{F}_q$-linear cyclic codes over $\mathbb{F}_{q^m}$: DFT approach, Des. Codes Cryptogr., 34 (2005), 89-116.  doi: 10.1007/s10623-003-4196-x.  Google Scholar

[10]

S. Dodunekov and I. Landgev, On near-MDS codes, J. Geom., 54 (1995), 30-43.  doi: 10.1007/BF01222850.  Google Scholar

[11]

R. GabrysE. YaakobiM. Blaum and P. H. Siegel, Constructions of partial MDS codes over small fields, IEEE Internat. Symposium Inform. Theory, 65 (2019), 3692-3701.  doi: 10.1109/TIT.2018.2890201.  Google Scholar

[12]

M. Grassl and T. A. Gulliver, On self-dual MDS codes, IEEE Internat. Symposium Inform. Theory, (2008), 1954-1957.   Google Scholar

[13]

W. C. Huffman, Cyclic $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes, Int. J. Inf. and Coding Theory, 1 (2010), 249-284.  doi: 10.1504/IJICOT.2010.032543.  Google Scholar

[14]

W. C. Huffman, Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order, Adv. Math. Commun., 7 (2013), 57-90.  doi: 10.3934/amc.2013.7.57.  Google Scholar

[15]

W. C. Huffman, On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes, Adv. Math. Commun., 7 (2013), 349-378.  doi: 10.3934/amc.2013.7.349.  Google Scholar

[16]

B. Hurley and T. Hurley, Systems of MDS codes from units and idempotents, Discrete Math., 335 (2014), 81-91.  doi: 10.1016/j.disc.2014.07.010.  Google Scholar

[17]

L. F. JinS. LingJ. Q. Luo and C. P. Xing, Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes, IEEE Trans. Inform. Theory, 56 (2010), 4735-4740.  doi: 10.1109/TIT.2010.2054174.  Google Scholar

[18]

L. F. Jin and C. P. Xing, New MDS self-dual codes from generalized Reed-Solomon codes, IEEE Trans. Inform. Theory, 63 (2017), 1434-1438.  doi: 10.1109/TIT.2016.2645759.  Google Scholar

[19]

T. Maruta, On the existence of cyclic and pseudo-cyclic MDS codes, Europ. J. Combinatorics, 19 (1998), 159-174.  doi: 10.1006/S0195-6698(97)90000-7.  Google Scholar

[20]

R. M. Roth and G. Seroussi, On cyclic MDS codes of length $q$ over $GF(q)$, IEEE Trans. Inform. Theory, 32 (1986), 284-285.  doi: 10.1109/TIT.1986.1057151.  Google Scholar

[21]

R. M. Roth and G. Seroussi, On generator matrices of MDS codes, IEEE Trans. Inform. Theory, 31 (1985), 826-830.  doi: 10.1109/TIT.1985.1057113.  Google Scholar

[22]

M. J. Shi and P. Solé, Optimal $p$-ary codes from one-weight and two-weight codes over $\mathbb{F}_p+v{\mathbb{F}_p}^*$, J. Syst. Sci. Complex., 28 (2015), 679-690.  doi: 10.1007/s11424-015-3265-3.  Google Scholar

[23]

Z.-X. Wan, Cyclic codes over Galois rings$^*$, Algebra Colloquium, 6 (1999), 291-304.   Google Scholar

show all references

References:
[1]

T. L. Alderson, Extending MDS codes, Ann. Comb., 9 (2005), 125-135.  doi: 10.1007/s00026-005-0245-7.  Google Scholar

[2]

I. Bouyukliev and J. Simonis, Some new results on optimal codes over $\mathbb{F}_5$, Des. Codes Cryptogr., 30 (2003), 97-111.  doi: 10.1023/A:1024763410967.  Google Scholar

[3]

S. Bouyuklieva and P. R. J. Östergảrd, New constructions of optimal self-dual binary codes of length 54, Des. Codes Cryptogr., 41 (2006), 101-109.  doi: 10.1007/s10623-006-0018-2.  Google Scholar

[4]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system, J. Symb. Comput., 24 (1997), 235-265.   Google Scholar

[5]

Y. L. Cao and Y. Gao, Repeated root cyclic $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Finite Fields Appl., 31 (2015), 202-227.  doi: 10.1016/j.ffa.2014.10.003.  Google Scholar

[6]

Y. L. CaoX. X. Chang and Y. Cao, Constacyclic $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Appl. Algebra Engrg. Comm. Comput., 26 (2015), 369-388.  doi: 10.1007/s00200-015-0257-4.  Google Scholar

[7]

Y. L. CaoJ. Gao and F.-W. Fu, Semisimple multivariable $\mathbb{F}_q$-linear codes over $\mathbb{F}_{q^l}$, Des. Codes Cryptogr., 77 (2015), 153-177.  doi: 10.1007/s10623-014-9994-9.  Google Scholar

[8]

B. C. Chen and H. W. Liu, New constructions of MDS codes with complementary duals, IEEE Trans. Inform. Theory, 64 (2018), 5776-5782.  doi: 10.1109/TIT.2017.2748955.  Google Scholar

[9]

B. K. Dey and B. S. Rajan, $\mathbb{F}_q$-linear cyclic codes over $\mathbb{F}_{q^m}$: DFT approach, Des. Codes Cryptogr., 34 (2005), 89-116.  doi: 10.1007/s10623-003-4196-x.  Google Scholar

[10]

S. Dodunekov and I. Landgev, On near-MDS codes, J. Geom., 54 (1995), 30-43.  doi: 10.1007/BF01222850.  Google Scholar

[11]

R. GabrysE. YaakobiM. Blaum and P. H. Siegel, Constructions of partial MDS codes over small fields, IEEE Internat. Symposium Inform. Theory, 65 (2019), 3692-3701.  doi: 10.1109/TIT.2018.2890201.  Google Scholar

[12]

M. Grassl and T. A. Gulliver, On self-dual MDS codes, IEEE Internat. Symposium Inform. Theory, (2008), 1954-1957.   Google Scholar

[13]

W. C. Huffman, Cyclic $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes, Int. J. Inf. and Coding Theory, 1 (2010), 249-284.  doi: 10.1504/IJICOT.2010.032543.  Google Scholar

[14]

W. C. Huffman, Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order, Adv. Math. Commun., 7 (2013), 57-90.  doi: 10.3934/amc.2013.7.57.  Google Scholar

[15]

W. C. Huffman, On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes, Adv. Math. Commun., 7 (2013), 349-378.  doi: 10.3934/amc.2013.7.349.  Google Scholar

[16]

B. Hurley and T. Hurley, Systems of MDS codes from units and idempotents, Discrete Math., 335 (2014), 81-91.  doi: 10.1016/j.disc.2014.07.010.  Google Scholar

[17]

L. F. JinS. LingJ. Q. Luo and C. P. Xing, Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes, IEEE Trans. Inform. Theory, 56 (2010), 4735-4740.  doi: 10.1109/TIT.2010.2054174.  Google Scholar

[18]

L. F. Jin and C. P. Xing, New MDS self-dual codes from generalized Reed-Solomon codes, IEEE Trans. Inform. Theory, 63 (2017), 1434-1438.  doi: 10.1109/TIT.2016.2645759.  Google Scholar

[19]

T. Maruta, On the existence of cyclic and pseudo-cyclic MDS codes, Europ. J. Combinatorics, 19 (1998), 159-174.  doi: 10.1006/S0195-6698(97)90000-7.  Google Scholar

[20]

R. M. Roth and G. Seroussi, On cyclic MDS codes of length $q$ over $GF(q)$, IEEE Trans. Inform. Theory, 32 (1986), 284-285.  doi: 10.1109/TIT.1986.1057151.  Google Scholar

[21]

R. M. Roth and G. Seroussi, On generator matrices of MDS codes, IEEE Trans. Inform. Theory, 31 (1985), 826-830.  doi: 10.1109/TIT.1985.1057113.  Google Scholar

[22]

M. J. Shi and P. Solé, Optimal $p$-ary codes from one-weight and two-weight codes over $\mathbb{F}_p+v{\mathbb{F}_p}^*$, J. Syst. Sci. Complex., 28 (2015), 679-690.  doi: 10.1007/s11424-015-3265-3.  Google Scholar

[23]

Z.-X. Wan, Cyclic codes over Galois rings$^*$, Algebra Colloquium, 6 (1999), 291-304.   Google Scholar

Table 1.  Some optimal cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^2} $-codes of length $ n $
$ \{q,n\} $ Basis Hamming weight enumerator $ (n,(q^2)^k,d) $
$ \{2,5\} $ $ \alpha_1 $ $ W_1 $ $ (5,(2^2)^2,4) $
$ \{3,5\} $ $ \alpha_2 $ $ W_2 $ $ (5,(3^2)^2,4) $
$ \{3,7\} $ $ \alpha_3 $ $ W_3 $ $ (7,(3^2)^3,5) $
$ \{5,7\} $ $ \alpha_{4} $ $ W_{4} $ $ (7,(5^2)^3,5) $
$ \{5,13\} $ $ \alpha_{5} $ $ W_{5} $ $ (13,(5^2)^2,12) $
$ \{5,17\} $ $ \alpha_{6} $ $ W_{6} $ $ (17,(5^2)^8,10) $
$ \{7,5\} $ $ \alpha_{7} $ $ W_{7} $ $ (5,(7^2)^2,4) $
$ \{7,11\} $ $ \alpha_{8} $ $ W_{8} $ $ (11,(7^2)^5,7) $
$ \{7,13\} $ $ \alpha_{9} $ $ W_{9} $ $ (13,(7^2)^6,8) $
$ \{11,13\} $ $ \alpha_{10} $ $ W_{10} $ $ (13,(11^2)^6,8) $
$ \{11,17\} $ $ \alpha_{11} $ $ W_{11} $ $ (17,(11^2)^8,10) $
$ \{13,5\} $ $ \alpha_{12} $ $ W_{12} $ $ (5,(13^2)^2,4) $
$ \{13,11\} $ $ \alpha_{13} $ $ W_{13} $ $ (11,(13^2)^5,7) $
$ \{13,17\} $ $ \alpha_{14} $ $ W_{14} $ $ (17,(13^2)^2,16) $
$ \{13,19\} $ $ \alpha_{15} $ $ W_{15} $ $ (19,(13^2)^9,11) $
$ \{17,5\} $ $ \alpha_{16} $ $ W_{16} $ $ (5,(17^2)^2,4) $
$ \{17,7\} $ $ \alpha_{17} $ $ W_{17} $ $ (7,(17^2)^3,5) $
$ \{17,11\} $ $ \alpha_{18} $ $ W_{18} $ $ (11,(17^2)^5,7) $
$ \{17,13\} $ $ \alpha_{19} $ $ W_{19} $ $ (13,(17^2)^3,11) $
$ \{19,7\} $ $ \alpha_{20} $ $ W_{20} $ $ (7,(19^2)^3,5) $
$ \{19,11\} $ $ \alpha_{21} $ $ W_{21} $ $ (11,(19^2)^5,7) $
$ \{19,13\} $ $ \alpha_{22} $ $ W_{22} $ $ (13,(19^2)^6,8) $
$ \{19,17\} $ $ \alpha_{23} $ $ W_{23} $ $ (17,(19^2)^4,14) $
$ \{23,5\} $ $ \alpha_{24} $ $ W_{24} $ $ (5,(23^2)^2,4) $
$ \{23,13\} $ $ \alpha_{25} $ $ W_{25} $ $ (13,(23^2)^3,11) $
$ \{23,17\} $ $ \alpha_{26} $ $ W_{26} $ $ (17,(23^2)^8,10) $
$ \{29,11\} $ $ \alpha_{27} $ $ W_{27} $ $ (11,(29^2)^5,7) $
$ \{29,17\} $ $ \alpha_{28} $ $ W_{28} $ $ (17,(29^2)^8,10) $
$ \{31,7\} $ $ \alpha_{29} $ $ W_{29} $ $ (7,(31^2)^3,5) $
$ \{31,13\} $ $ \alpha_{30} $ $ W_{30} $ $ (13,(31^2)^2,12) $
$ \{31,17\} $ $ \alpha_{31} $ $ W_{31} $ $ (17,(31^2)^8,10) $
$ \{37,5\} $ $ \alpha_{32} $ $ W_{32} $ $ (5,(37^2)^2,4) $
$ \{37,13\} $ $ \alpha_{33} $ $ W_{33} $ $ (13,(37^2)^6,8) $
$ \{41,11\} $ $ \alpha_{34} $ $ W_{34} $ $ (11,(41^2)^5,7) $
$ \{41,13\} $ $ \alpha_{35} $ $ W_{35} $ $ (13,(41^2)^6,8) $
$ \{43,5\} $ $ \alpha_{36} $ $ W_{36} $ $ (5,(43^2)^2,4) $
$ \{43,13\} $ $ \alpha_{37} $ $ W_{37} $ $ (13,(43^2)^3,11) $
$ \{43,17\} $ $ \alpha_{38} $ $ W_{38} $ $ (17,(43^2)^4,14) $
$ \{47,5\} $ $ \alpha_{39} $ $ W_{39} $ $ (5,(47^2)^2,4) $
$ \{47,7\} $ $ \alpha_{40} $ $ W_{40} $ $ (7,(47^2)^3,5) $
$ \{47,13\} $ $ \alpha_{41} $ $ W_{41} $ $ (13,(47^2)^2,12) $
$ \{47,17\} $ $ \alpha_{42} $ $ W_{42} $ $ (17,(47^2)^2,16) $
$ \{53,5\} $ $ \alpha_{43} $ $ W_{43} $ $ (5,(53^2)^2,4) $
$ \{53,17\} $ $ \alpha_{44} $ $ W_{44} $ $ (17,(53^2)^4,14) $
$ \{59,7\} $ $ \alpha_{45} $ $ W_{45} $ $ (7,(59^2)^3,5) $
$ \{59,13\} $ $ \alpha_{46} $ $ W_{46} $ $ (13,(59^2)^6,8) $
$ \{59,17\} $ $ \alpha_{47} $ $ W_{47} $ $ (17,(59^2)^4,14) $
$ \{61,7\} $ $ \alpha_{48} $ $ W_{48} $ $ (7,(61^2)^3,5) $
$ \{61,11\} $ $ \alpha_{49} $ $ W_{49} $ $ (11,(61^2)^5,7) $
$ \{67,5\} $ $ \alpha_{50} $ $ W_{50} $ $ (5,(67^2)^2,4) $
$ \{67,13\} $ $ \alpha_{51} $ $ W_{51} $ $ (13,(61^2)^6,8) $
$ \{71,13\} $ $ \alpha_{52} $ $ W_{52} $ $ (13,(71^2)^6,8) $
$ \{73,11\} $ $ \alpha_{53} $ $ W_{53} $ $ (11,(73^2)^5,7) $
$ \{73,13\} $ $ \alpha_{54} $ $ W_{54} $ $ (13,(73^2)^2,12) $
$ \{79,11\} $ $ \alpha_{55} $ $ W_{55} $ $ (11,(79^2)^5,7) $
$ \{83,5\} $ $ \alpha_{56} $ $ W_{56} $ $ (5,(83^2)^2,4) $
$ \{83,11\} $ $ \alpha_{57} $ $ W_{57} $ $ (11,(83^2)^5,7) $
$ \{89,7\} $ $ \alpha_{58} $ $ W_{58} $ $ (7,(89^2)^3,5) $
$ \{89,17\} $ $ \alpha_{59} $ $ W_{59} $ $ (17,(89^2)^2,16) $
$ \{97,5\} $ $ \alpha_{60} $ $ W_{60} $ $ (5,(97^2)^2,4) $
$ \{q,n\} $ Basis Hamming weight enumerator $ (n,(q^2)^k,d) $
$ \{2,5\} $ $ \alpha_1 $ $ W_1 $ $ (5,(2^2)^2,4) $
$ \{3,5\} $ $ \alpha_2 $ $ W_2 $ $ (5,(3^2)^2,4) $
$ \{3,7\} $ $ \alpha_3 $ $ W_3 $ $ (7,(3^2)^3,5) $
$ \{5,7\} $ $ \alpha_{4} $ $ W_{4} $ $ (7,(5^2)^3,5) $
$ \{5,13\} $ $ \alpha_{5} $ $ W_{5} $ $ (13,(5^2)^2,12) $
$ \{5,17\} $ $ \alpha_{6} $ $ W_{6} $ $ (17,(5^2)^8,10) $
$ \{7,5\} $ $ \alpha_{7} $ $ W_{7} $ $ (5,(7^2)^2,4) $
$ \{7,11\} $ $ \alpha_{8} $ $ W_{8} $ $ (11,(7^2)^5,7) $
$ \{7,13\} $ $ \alpha_{9} $ $ W_{9} $ $ (13,(7^2)^6,8) $
$ \{11,13\} $ $ \alpha_{10} $ $ W_{10} $ $ (13,(11^2)^6,8) $
$ \{11,17\} $ $ \alpha_{11} $ $ W_{11} $ $ (17,(11^2)^8,10) $
$ \{13,5\} $ $ \alpha_{12} $ $ W_{12} $ $ (5,(13^2)^2,4) $
$ \{13,11\} $ $ \alpha_{13} $ $ W_{13} $ $ (11,(13^2)^5,7) $
$ \{13,17\} $ $ \alpha_{14} $ $ W_{14} $ $ (17,(13^2)^2,16) $
$ \{13,19\} $ $ \alpha_{15} $ $ W_{15} $ $ (19,(13^2)^9,11) $
$ \{17,5\} $ $ \alpha_{16} $ $ W_{16} $ $ (5,(17^2)^2,4) $
$ \{17,7\} $ $ \alpha_{17} $ $ W_{17} $ $ (7,(17^2)^3,5) $
$ \{17,11\} $ $ \alpha_{18} $ $ W_{18} $ $ (11,(17^2)^5,7) $
$ \{17,13\} $ $ \alpha_{19} $ $ W_{19} $ $ (13,(17^2)^3,11) $
$ \{19,7\} $ $ \alpha_{20} $ $ W_{20} $ $ (7,(19^2)^3,5) $
$ \{19,11\} $ $ \alpha_{21} $ $ W_{21} $ $ (11,(19^2)^5,7) $
$ \{19,13\} $ $ \alpha_{22} $ $ W_{22} $ $ (13,(19^2)^6,8) $
$ \{19,17\} $ $ \alpha_{23} $ $ W_{23} $ $ (17,(19^2)^4,14) $
$ \{23,5\} $ $ \alpha_{24} $ $ W_{24} $ $ (5,(23^2)^2,4) $
$ \{23,13\} $ $ \alpha_{25} $ $ W_{25} $ $ (13,(23^2)^3,11) $
$ \{23,17\} $ $ \alpha_{26} $ $ W_{26} $ $ (17,(23^2)^8,10) $
$ \{29,11\} $ $ \alpha_{27} $ $ W_{27} $ $ (11,(29^2)^5,7) $
$ \{29,17\} $ $ \alpha_{28} $ $ W_{28} $ $ (17,(29^2)^8,10) $
$ \{31,7\} $ $ \alpha_{29} $ $ W_{29} $ $ (7,(31^2)^3,5) $
$ \{31,13\} $ $ \alpha_{30} $ $ W_{30} $ $ (13,(31^2)^2,12) $
$ \{31,17\} $ $ \alpha_{31} $ $ W_{31} $ $ (17,(31^2)^8,10) $
$ \{37,5\} $ $ \alpha_{32} $ $ W_{32} $ $ (5,(37^2)^2,4) $
$ \{37,13\} $ $ \alpha_{33} $ $ W_{33} $ $ (13,(37^2)^6,8) $
$ \{41,11\} $ $ \alpha_{34} $ $ W_{34} $ $ (11,(41^2)^5,7) $
$ \{41,13\} $ $ \alpha_{35} $ $ W_{35} $ $ (13,(41^2)^6,8) $
$ \{43,5\} $ $ \alpha_{36} $ $ W_{36} $ $ (5,(43^2)^2,4) $
$ \{43,13\} $ $ \alpha_{37} $ $ W_{37} $ $ (13,(43^2)^3,11) $
$ \{43,17\} $ $ \alpha_{38} $ $ W_{38} $ $ (17,(43^2)^4,14) $
$ \{47,5\} $ $ \alpha_{39} $ $ W_{39} $ $ (5,(47^2)^2,4) $
$ \{47,7\} $ $ \alpha_{40} $ $ W_{40} $ $ (7,(47^2)^3,5) $
$ \{47,13\} $ $ \alpha_{41} $ $ W_{41} $ $ (13,(47^2)^2,12) $
$ \{47,17\} $ $ \alpha_{42} $ $ W_{42} $ $ (17,(47^2)^2,16) $
$ \{53,5\} $ $ \alpha_{43} $ $ W_{43} $ $ (5,(53^2)^2,4) $
$ \{53,17\} $ $ \alpha_{44} $ $ W_{44} $ $ (17,(53^2)^4,14) $
$ \{59,7\} $ $ \alpha_{45} $ $ W_{45} $ $ (7,(59^2)^3,5) $
$ \{59,13\} $ $ \alpha_{46} $ $ W_{46} $ $ (13,(59^2)^6,8) $
$ \{59,17\} $ $ \alpha_{47} $ $ W_{47} $ $ (17,(59^2)^4,14) $
$ \{61,7\} $ $ \alpha_{48} $ $ W_{48} $ $ (7,(61^2)^3,5) $
$ \{61,11\} $ $ \alpha_{49} $ $ W_{49} $ $ (11,(61^2)^5,7) $
$ \{67,5\} $ $ \alpha_{50} $ $ W_{50} $ $ (5,(67^2)^2,4) $
$ \{67,13\} $ $ \alpha_{51} $ $ W_{51} $ $ (13,(61^2)^6,8) $
$ \{71,13\} $ $ \alpha_{52} $ $ W_{52} $ $ (13,(71^2)^6,8) $
$ \{73,11\} $ $ \alpha_{53} $ $ W_{53} $ $ (11,(73^2)^5,7) $
$ \{73,13\} $ $ \alpha_{54} $ $ W_{54} $ $ (13,(73^2)^2,12) $
$ \{79,11\} $ $ \alpha_{55} $ $ W_{55} $ $ (11,(79^2)^5,7) $
$ \{83,5\} $ $ \alpha_{56} $ $ W_{56} $ $ (5,(83^2)^2,4) $
$ \{83,11\} $ $ \alpha_{57} $ $ W_{57} $ $ (11,(83^2)^5,7) $
$ \{89,7\} $ $ \alpha_{58} $ $ W_{58} $ $ (7,(89^2)^3,5) $
$ \{89,17\} $ $ \alpha_{59} $ $ W_{59} $ $ (17,(89^2)^2,16) $
$ \{97,5\} $ $ \alpha_{60} $ $ W_{60} $ $ (5,(97^2)^2,4) $
[1]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[2]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[3]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[4]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[5]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[6]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[7]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[8]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[9]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[10]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[11]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[12]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[13]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[14]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[15]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[16]

Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053

[17]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[18]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[19]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020121

[20]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

2019 Impact Factor: 0.734

Article outline

Figures and Tables

[Back to Top]