-
Previous Article
Two constructions of low-hit-zone frequency-hopping sequence sets
- AMC Home
- This Issue
-
Next Article
The differential spectrum of a class of power functions over finite fields
The $[46, 9, 20]_2$ code is unique
Mathematisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany |
The minimum distance of all binary linear codes with dimension at most eight is known. The smallest open case for dimension nine is length $ n = 46 $ with known bounds $ 19\le d\le 20 $. Here we present a $ [46,9,20]_2 $ code and show its uniqueness. Interestingly enough, this unique optimal code is asymmetric, i.e., it has a trivial automorphism group. Additionally, we show the non-existence of $ [47,10,20]_2 $ and $ [85,9,40]_2 $ codes.
References:
[1] |
L. D. Baumert and R. J. McEliece,
A note on the Griesmer bound, IEEE Transactions on Information Theory, IT-19 (1973), 134-135.
doi: 10.1109/tit.1973.1054939. |
[2] |
I. Bouyukliev, D. B. Jaffe and V. Vavrek,
The smallest length of eight-dimensional binary linear codes with prescribed minimum distance, IEEE Transactions on Information Theory, 46 (2000), 1539-1544.
doi: 10.1109/18.850690. |
[3] |
I. G. Bouyukliev,
What is $Q$-extension?, Serdica Journal of Computing, 1 (2007), 115-130.
|
[4] |
I. Bouyukliev and D. B. Jaffe,
Optimal binary linear codes of dimension at most seven, Discrete Mathematics, 226 (2001), 51-70.
doi: 10.1016/S0012-365X(00)00125-4. |
[5] |
S. Dodunekov, S. Guritman and J. Simonis,
Some new results on the minimum length of binary linear codes of dimension nine, IEEE Transactions on Information Theory, 45 (1999), 2543-2546.
doi: 10.1109/18.796403. |
[6] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at: http://www.codetables.de, (2007), Accessed on 2019-04-04. Google Scholar |
[7] |
J. H. Griesmer,
A bound for error-correcting codes, IBM Journal of Research and Development, 4 (1960), 532-542.
doi: 10.1147/rd.45.0532. |
[8] |
S. Kurz, Lincode - computer classification of linear codes, arXiv: 1912.09357. Google Scholar |
[9] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[10] |
J. Simonis,
Restrictions on the weight distribution of binary linear codes imposed by the structure of reed-muller codes, IEEE transactions on Information Theory, 40 (1994), 194-196.
doi: 10.1109/18.272480. |
[11] |
J. Simonis,
The $[23, 14, 5]$ Wagner code is unique, Discrete Mathematics, 213 (2000), 269-282.
doi: 10.1016/S0012-365X(99)00187-9. |
[12] |
H. C. A. van Tilborg,
The smallest length of binary $7$-dimensional linear codes with prescribed minimum distance, Discrete Mathematics, 33 (1981), 197-207.
doi: 10.1016/0012-365X(81)90166-7. |
[13] |
H. N. Ward,
Divisible codes - a survey, Serdica Mathematical Journal, 27 (2001), 263-278.
|
show all references
References:
[1] |
L. D. Baumert and R. J. McEliece,
A note on the Griesmer bound, IEEE Transactions on Information Theory, IT-19 (1973), 134-135.
doi: 10.1109/tit.1973.1054939. |
[2] |
I. Bouyukliev, D. B. Jaffe and V. Vavrek,
The smallest length of eight-dimensional binary linear codes with prescribed minimum distance, IEEE Transactions on Information Theory, 46 (2000), 1539-1544.
doi: 10.1109/18.850690. |
[3] |
I. G. Bouyukliev,
What is $Q$-extension?, Serdica Journal of Computing, 1 (2007), 115-130.
|
[4] |
I. Bouyukliev and D. B. Jaffe,
Optimal binary linear codes of dimension at most seven, Discrete Mathematics, 226 (2001), 51-70.
doi: 10.1016/S0012-365X(00)00125-4. |
[5] |
S. Dodunekov, S. Guritman and J. Simonis,
Some new results on the minimum length of binary linear codes of dimension nine, IEEE Transactions on Information Theory, 45 (1999), 2543-2546.
doi: 10.1109/18.796403. |
[6] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at: http://www.codetables.de, (2007), Accessed on 2019-04-04. Google Scholar |
[7] |
J. H. Griesmer,
A bound for error-correcting codes, IBM Journal of Research and Development, 4 (1960), 532-542.
doi: 10.1147/rd.45.0532. |
[8] |
S. Kurz, Lincode - computer classification of linear codes, arXiv: 1912.09357. Google Scholar |
[9] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[10] |
J. Simonis,
Restrictions on the weight distribution of binary linear codes imposed by the structure of reed-muller codes, IEEE transactions on Information Theory, 40 (1994), 194-196.
doi: 10.1109/18.272480. |
[11] |
J. Simonis,
The $[23, 14, 5]$ Wagner code is unique, Discrete Mathematics, 213 (2000), 269-282.
doi: 10.1016/S0012-365X(99)00187-9. |
[12] |
H. C. A. van Tilborg,
The smallest length of binary $7$-dimensional linear codes with prescribed minimum distance, Discrete Mathematics, 33 (1981), 197-207.
doi: 10.1016/0012-365X(81)90166-7. |
[13] |
H. N. Ward,
Divisible codes - a survey, Serdica Mathematical Journal, 27 (2001), 263-278.
|
k/n | 20 | 24 | 28 | 30 | 32 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |
1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||||||
2 | 1 | 1 | 2 | 0 | 3 | 0 | 3 | 0 | ||||||||
3 | 1 | 1 | 2 | 4 | 6 | 9 | ||||||||||
4 | 1 | 4 | 13 | 26 | ||||||||||||
5 | 3 | 15 | 163 | |||||||||||||
6 | 24 | 3649 | ||||||||||||||
7 | 5 | 337794 |
k/n | 20 | 24 | 28 | 30 | 32 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |
1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ||||||
2 | 1 | 1 | 2 | 0 | 3 | 0 | 3 | 0 | ||||||||
3 | 1 | 1 | 2 | 4 | 6 | 9 | ||||||||||
4 | 1 | 4 | 13 | 26 | ||||||||||||
5 | 3 | 15 | 163 | |||||||||||||
6 | 24 | 3649 | ||||||||||||||
7 | 5 | 337794 |
k/n | 40 | 48 | 56 | 60 | 64 | 68 | 70 | 72 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
2 | 1 | 1 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | ||||||||
3 | 1 | 1 | 2 | 0 | 3 | 0 | 5 | 0 | ||||||||||
4 | 1 | 1 | 2 | 3 | 6 | 10 | ||||||||||||
5 | 1 | 3 | 11 | 16 | ||||||||||||||
6 | 2 | 8 | 106 | |||||||||||||||
7 | 7 | 5613 |
k/n | 40 | 48 | 56 | 60 | 64 | 68 | 70 | 72 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
2 | 1 | 1 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | ||||||||
3 | 1 | 1 | 2 | 0 | 3 | 0 | 5 | 0 | ||||||||||
4 | 1 | 1 | 2 | 3 | 6 | 10 | ||||||||||||
5 | 1 | 3 | 11 | 16 | ||||||||||||||
6 | 2 | 8 | 106 | |||||||||||||||
7 | 7 | 5613 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
25773 | 48792 | 26091 | 5198 | 450 | 17 | 1 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
25773 | 48792 | 26091 | 5198 | 450 | 17 | 1 |
[1] |
Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020129 |
[2] |
Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044 |
[3] |
Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065 |
[4] |
Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045 |
[5] |
Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055 |
[6] |
Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020120 |
[7] |
Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020124 |
[8] |
Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049 |
[9] |
Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039 |
[10] |
Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020118 |
[11] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[12] |
Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053 |
[13] |
Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054 |
[14] |
Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051 |
[15] |
Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020122 |
[16] |
Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020127 |
[17] |
Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041 |
[18] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
[19] |
Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020123 |
[20] |
Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]