\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The $[46, 9, 20]_2$ code is unique

Abstract / Introduction Full Text(HTML) Figure(0) / Table(3) Related Papers Cited by
  • The minimum distance of all binary linear codes with dimension at most eight is known. The smallest open case for dimension nine is length $ n = 46 $ with known bounds $ 19\le d\le 20 $. Here we present a $ [46,9,20]_2 $ code and show its uniqueness. Interestingly enough, this unique optimal code is asymmetric, i.e., it has a trivial automorphism group. Additionally, we show the non-existence of $ [47,10,20]_2 $ and $ [85,9,40]_2 $ codes.

    Mathematics Subject Classification: Primary: 94B65; Secondary: 94B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Number of $ [n,k,\{20,24,28,32\}]_2 $ codes

    k/n 20 24 28 30 32 34 35 36 37 38 39 40 41 42 43 44
    1 1 1 1 0 1 0 0 0 0 0
    2 1 1 2 0 3 0 3 0
    3 1 1 2 4 6 9
    4 1 4 13 26
    5 3 15 163
    6 24 3649
    7 5 337794
     | Show Table
    DownLoad: CSV

    Table 2.  Number of $ [n,k,\{40,48,56\}]_2 $ codes

    k/n 40 48 56 60 64 68 70 72 74 75 76 77 78 79 80 81 82 83
    1 1 1 1 0 0 0 0 0 0 0 0 0
    2 1 1 2 0 2 0 0 2 0 0
    3 1 1 2 0 3 0 5 0
    4 1 1 2 3 6 10
    5 1 3 11 16
    6 2 8 106
    7 7 5613
     | Show Table
    DownLoad: CSV

    Table 3.  Number of $ [84,8,\{40,48,56\}]_2 $ codes per $ A_{56} $

    $ A_{56} $ 3 4 5 6 7 8 9
    25773 48792 26091 5198 450 17 1
     | Show Table
    DownLoad: CSV
  • [1] L. D. Baumert and R. J. McEliece, A note on the Griesmer bound, IEEE Transactions on Information Theory, IT-19 (1973), 134-135.  doi: 10.1109/tit.1973.1054939.
    [2] I. BouyuklievD. B. Jaffe and V. Vavrek, The smallest length of eight-dimensional binary linear codes with prescribed minimum distance, IEEE Transactions on Information Theory, 46 (2000), 1539-1544.  doi: 10.1109/18.850690.
    [3] I. G. Bouyukliev, What is $Q$-extension?, Serdica Journal of Computing, 1 (2007), 115-130. 
    [4] I. Bouyukliev and D. B. Jaffe, Optimal binary linear codes of dimension at most seven, Discrete Mathematics, 226 (2001), 51-70.  doi: 10.1016/S0012-365X(00)00125-4.
    [5] S. DodunekovS. Guritman and J. Simonis, Some new results on the minimum length of binary linear codes of dimension nine, IEEE Transactions on Information Theory, 45 (1999), 2543-2546.  doi: 10.1109/18.796403.
    [6] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at: http://www.codetables.de, (2007), Accessed on 2019-04-04.
    [7] J. H. Griesmer, A bound for error-correcting codes, IBM Journal of Research and Development, 4 (1960), 532-542.  doi: 10.1147/rd.45.0532.
    [8] S. Kurz, Lincode - computer classification of linear codes, arXiv: 1912.09357.
    [9] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
    [10] J. Simonis, Restrictions on the weight distribution of binary linear codes imposed by the structure of reed-muller codes, IEEE transactions on Information Theory, 40 (1994), 194-196.  doi: 10.1109/18.272480.
    [11] J. Simonis, The $[23, 14, 5]$ Wagner code is unique, Discrete Mathematics, 213 (2000), 269-282.  doi: 10.1016/S0012-365X(99)00187-9.
    [12] H. C. A. van Tilborg, The smallest length of binary $7$-dimensional linear codes with prescribed minimum distance, Discrete Mathematics, 33 (1981), 197-207.  doi: 10.1016/0012-365X(81)90166-7.
    [13] H. N. Ward, Divisible codes - a survey, Serdica Mathematical Journal, 27 (2001), 263-278. 
  • 加载中

Tables(3)

SHARE

Article Metrics

HTML views(2302) PDF downloads(458) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return