doi: 10.3934/amc.2020075

$ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $

1. 

Department of Mathematics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia

2. 

Department of Mathematics and Applied Mathematics, University of Pretoria, Hatfield 0002, Pretoria, South Africa

3. 

Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium

Received  September 2019 Published  April 2020

In this paper we construct $ 2 $-PD-sets of $ 16 $ elements for codes from the Desarguesian projective planes $ \mathrm{PG}(2,q) $, where $ q = 2^h $ and $ 5\leq h \leq 9 $. We also construct $ 3 $-PD-sets of $ 75 $ elements for the code from the Desarguesian projective plane $ \mathrm{PG}(2,q) $, where $ q = 2^9 $. These $ 2 $-PD-sets and $ 3 $-PD-sets can be used for partial permutation decoding of codes obtained from the Desarguesian projective planes.

Citation: Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, doi: 10.3934/amc.2020075
References:
[1] E. F. AssmusJr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.  Google Scholar
[2]

D. Crnković and N. Mostarac, PD-sets for codes related to flag-transitive symmetric designs, Trans. Comb., 7 (2018), 37-50.  doi: 10.22108/toc.2017.21615.  Google Scholar

[3]

D. M. Gordon, Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory, 28 (1982), 541-543.  doi: 10.1109/TIT.1982.1056504.  Google Scholar

[4]

J. W. P. Hirschfeld, Projective Geometries Over Finite Fields, 2nd edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[5]

W. C. Huffman, Codes and groups, Handbook of Coding Theory, North-Holland, Amsterdam, 1, 2 (1998), 1345-1440.   Google Scholar

[6]

J. D. Key, Permutation decoding for codes from designs, finite geometries and graphs, Information Security, Coding Theory and Related Combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., IOS, Amsterdam, 29 (2011), 172-201.   Google Scholar

[7]

J. D. KeyT. P. McDonough and V. C. Mavron, Partial permutation decoding for codes from finite planes, European J. Combin., 26 (2005), 665-682.  doi: 10.1016/j.ejc.2004.04.007.  Google Scholar

[8]

J. MacWilliams, Permutation decoding of systematic codes, Bell Syst. Tech. J., 43 (1964), 485-505.  doi: 10.1002/j.1538-7305.1964.tb04075.x.  Google Scholar

[9]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[10]

G. E. Moorhouse, Bruck nets, codes, and characters of loops, Des. Codes Cryptogr., 1 (1991), 7-29.  doi: 10.1007/BF00123956.  Google Scholar

[11]

N. Pace and A. Sonnino, On linear codes admitting large automorphism groups, Des. Codes Cryptogr., 83 (2017), 115-143.  doi: 10.1007/s10623-016-0207-6.  Google Scholar

[12]

K. J. C. Smith, On the $p$-rank of the incidence matrix of points in hyperplanes in a finite projective geometry, J. Combin. Theory, 7 (1969), 122-129.  doi: 10.1016/S0021-9800(69)80046-3.  Google Scholar

[13]

P. Vandendriessche, Codes of Desarguesian projective planes of even order, projective triads and $(q + t, t)$-arcs of type $(0, 2, t)$, Finite Fields Appl., 17 (2011), 521-531.  doi: 10.1016/j.ffa.2011.03.003.  Google Scholar

[14]

P. Vandendriessche, Intertwined Results on Linear Codes and Galois Geometries, Ph.D thesis, Ghent University, Faculty of Sciences, Ghent, Belgium, 2014. https://cage.ugent.be/geometry/theses.php. Google Scholar

show all references

References:
[1] E. F. AssmusJr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.  Google Scholar
[2]

D. Crnković and N. Mostarac, PD-sets for codes related to flag-transitive symmetric designs, Trans. Comb., 7 (2018), 37-50.  doi: 10.22108/toc.2017.21615.  Google Scholar

[3]

D. M. Gordon, Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory, 28 (1982), 541-543.  doi: 10.1109/TIT.1982.1056504.  Google Scholar

[4]

J. W. P. Hirschfeld, Projective Geometries Over Finite Fields, 2nd edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[5]

W. C. Huffman, Codes and groups, Handbook of Coding Theory, North-Holland, Amsterdam, 1, 2 (1998), 1345-1440.   Google Scholar

[6]

J. D. Key, Permutation decoding for codes from designs, finite geometries and graphs, Information Security, Coding Theory and Related Combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., IOS, Amsterdam, 29 (2011), 172-201.   Google Scholar

[7]

J. D. KeyT. P. McDonough and V. C. Mavron, Partial permutation decoding for codes from finite planes, European J. Combin., 26 (2005), 665-682.  doi: 10.1016/j.ejc.2004.04.007.  Google Scholar

[8]

J. MacWilliams, Permutation decoding of systematic codes, Bell Syst. Tech. J., 43 (1964), 485-505.  doi: 10.1002/j.1538-7305.1964.tb04075.x.  Google Scholar

[9]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[10]

G. E. Moorhouse, Bruck nets, codes, and characters of loops, Des. Codes Cryptogr., 1 (1991), 7-29.  doi: 10.1007/BF00123956.  Google Scholar

[11]

N. Pace and A. Sonnino, On linear codes admitting large automorphism groups, Des. Codes Cryptogr., 83 (2017), 115-143.  doi: 10.1007/s10623-016-0207-6.  Google Scholar

[12]

K. J. C. Smith, On the $p$-rank of the incidence matrix of points in hyperplanes in a finite projective geometry, J. Combin. Theory, 7 (1969), 122-129.  doi: 10.1016/S0021-9800(69)80046-3.  Google Scholar

[13]

P. Vandendriessche, Codes of Desarguesian projective planes of even order, projective triads and $(q + t, t)$-arcs of type $(0, 2, t)$, Finite Fields Appl., 17 (2011), 521-531.  doi: 10.1016/j.ffa.2011.03.003.  Google Scholar

[14]

P. Vandendriessche, Intertwined Results on Linear Codes and Galois Geometries, Ph.D thesis, Ghent University, Faculty of Sciences, Ghent, Belgium, 2014. https://cage.ugent.be/geometry/theses.php. Google Scholar

Table 1.  Codes of $ \mathrm{PG}(2,q) $: lower bounds on sizes of PD-sets and $ 2 $-PD-sets
$ q $ Code $ t $ $ r $ $ b $ $ b_2 $
$ 32 $ [1057,244, 33] 16 813 180 3
$ 64 $ [4161,730, 65] 32 3431 1623 3
$ 128 $ [16513, 2188,129] 64 14325 40696 3
$ 256 $ [65793, 6562,257] 128 59231 3965945 3
$ 512 $ [262657, 19684,513] 256 242973 3625171287 3
$ q $ Code $ t $ $ r $ $ b $ $ b_2 $
$ 32 $ [1057,244, 33] 16 813 180 3
$ 64 $ [4161,730, 65] 32 3431 1623 3
$ 128 $ [16513, 2188,129] 64 14325 40696 3
$ 256 $ [65793, 6562,257] 128 59231 3965945 3
$ 512 $ [262657, 19684,513] 256 242973 3625171287 3
[1]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[2]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[3]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[4]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[5]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[6]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[7]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[8]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[9]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[10]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[11]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[12]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[13]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[14]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[15]

Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094

[16]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[17]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[18]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[19]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[20]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (46)
  • HTML views (353)
  • Cited by (0)

[Back to Top]