| $ q $ | Code | $ t $ | $ r $ | $ b $ | $ b_2 $ |
| $ 32 $ | [1057,244, 33] | 16 | 813 | 180 | 3 |
| $ 64 $ | [4161,730, 65] | 32 | 3431 | 1623 | 3 |
| $ 128 $ | [16513, 2188,129] | 64 | 14325 | 40696 | 3 |
| $ 256 $ | [65793, 6562,257] | 128 | 59231 | 3965945 | 3 |
| $ 512 $ | [262657, 19684,513] | 256 | 242973 | 3625171287 | 3 |
In this paper we construct $ 2 $-PD-sets of $ 16 $ elements for codes from the Desarguesian projective planes $ \mathrm{PG}(2,q) $, where $ q = 2^h $ and $ 5\leq h \leq 9 $. We also construct $ 3 $-PD-sets of $ 75 $ elements for the code from the Desarguesian projective plane $ \mathrm{PG}(2,q) $, where $ q = 2^9 $. These $ 2 $-PD-sets and $ 3 $-PD-sets can be used for partial permutation decoding of codes obtained from the Desarguesian projective planes.
| Citation: |
Table 1.
Codes of
| $ q $ | Code | $ t $ | $ r $ | $ b $ | $ b_2 $ |
| $ 32 $ | [1057,244, 33] | 16 | 813 | 180 | 3 |
| $ 64 $ | [4161,730, 65] | 32 | 3431 | 1623 | 3 |
| $ 128 $ | [16513, 2188,129] | 64 | 14325 | 40696 | 3 |
| $ 256 $ | [65793, 6562,257] | 128 | 59231 | 3965945 | 3 |
| $ 512 $ | [262657, 19684,513] | 256 | 242973 | 3625171287 | 3 |
| [1] |
E. F. Assmus, Jr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9781316529836.
|
| [2] |
D. Crnković and N. Mostarac, PD-sets for codes related to flag-transitive symmetric designs, Trans. Comb., 7 (2018), 37-50.
doi: 10.22108/toc.2017.21615.
|
| [3] |
D. M. Gordon, Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory, 28 (1982), 541-543.
doi: 10.1109/TIT.1982.1056504.
|
| [4] |
J. W. P. Hirschfeld, Projective Geometries Over Finite Fields, 2nd edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.
|
| [5] |
W. C. Huffman, Codes and groups, Handbook of Coding Theory, North-Holland, Amsterdam, 1, 2 (1998), 1345-1440.
|
| [6] |
J. D. Key, Permutation decoding for codes from designs, finite geometries and graphs, Information Security, Coding Theory and Related Combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., IOS, Amsterdam, 29 (2011), 172-201.
|
| [7] |
J. D. Key, T. P. McDonough and V. C. Mavron, Partial permutation decoding for codes from finite planes, European J. Combin., 26 (2005), 665-682.
doi: 10.1016/j.ejc.2004.04.007.
|
| [8] |
J. MacWilliams, Permutation decoding of systematic codes, Bell Syst. Tech. J., 43 (1964), 485-505.
doi: 10.1002/j.1538-7305.1964.tb04075.x.
|
| [9] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
|
| [10] |
G. E. Moorhouse, Bruck nets, codes, and characters of loops, Des. Codes Cryptogr., 1 (1991), 7-29.
doi: 10.1007/BF00123956.
|
| [11] |
N. Pace and A. Sonnino, On linear codes admitting large automorphism groups, Des. Codes Cryptogr., 83 (2017), 115-143.
doi: 10.1007/s10623-016-0207-6.
|
| [12] |
K. J. C. Smith, On the $p$-rank of the incidence matrix of points in hyperplanes in a finite projective geometry, J. Combin. Theory, 7 (1969), 122-129.
doi: 10.1016/S0021-9800(69)80046-3.
|
| [13] |
P. Vandendriessche, Codes of Desarguesian projective planes of even order, projective triads and $(q + t, t)$-arcs of type $(0, 2, t)$, Finite Fields Appl., 17 (2011), 521-531.
doi: 10.1016/j.ffa.2011.03.003.
|
| [14] |
P. Vandendriessche, Intertwined Results on Linear Codes and Galois Geometries, Ph.D thesis, Ghent University, Faculty of Sciences, Ghent, Belgium, 2014. https://cage.ugent.be/geometry/theses.php.
|