August  2021, 15(3): 423-440. doi: 10.3934/amc.2020075

$ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $

1. 

Department of Mathematics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia

2. 

Department of Mathematics and Applied Mathematics, University of Pretoria, Hatfield 0002, Pretoria, South Africa

3. 

Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium

Received  September 2019 Published  April 2020

In this paper we construct $ 2 $-PD-sets of $ 16 $ elements for codes from the Desarguesian projective planes $ \mathrm{PG}(2,q) $, where $ q = 2^h $ and $ 5\leq h \leq 9 $. We also construct $ 3 $-PD-sets of $ 75 $ elements for the code from the Desarguesian projective plane $ \mathrm{PG}(2,q) $, where $ q = 2^9 $. These $ 2 $-PD-sets and $ 3 $-PD-sets can be used for partial permutation decoding of codes obtained from the Desarguesian projective planes.

Citation: Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075
References:
[1] E. F. AssmusJr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.  Google Scholar
[2]

D. Crnković and N. Mostarac, PD-sets for codes related to flag-transitive symmetric designs, Trans. Comb., 7 (2018), 37-50.  doi: 10.22108/toc.2017.21615.  Google Scholar

[3]

D. M. Gordon, Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory, 28 (1982), 541-543.  doi: 10.1109/TIT.1982.1056504.  Google Scholar

[4]

J. W. P. Hirschfeld, Projective Geometries Over Finite Fields, 2nd edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[5]

W. C. Huffman, Codes and groups, Handbook of Coding Theory, North-Holland, Amsterdam, 1, 2 (1998), 1345-1440.   Google Scholar

[6]

J. D. Key, Permutation decoding for codes from designs, finite geometries and graphs, Information Security, Coding Theory and Related Combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., IOS, Amsterdam, 29 (2011), 172-201.   Google Scholar

[7]

J. D. KeyT. P. McDonough and V. C. Mavron, Partial permutation decoding for codes from finite planes, European J. Combin., 26 (2005), 665-682.  doi: 10.1016/j.ejc.2004.04.007.  Google Scholar

[8]

J. MacWilliams, Permutation decoding of systematic codes, Bell Syst. Tech. J., 43 (1964), 485-505.  doi: 10.1002/j.1538-7305.1964.tb04075.x.  Google Scholar

[9]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[10]

G. E. Moorhouse, Bruck nets, codes, and characters of loops, Des. Codes Cryptogr., 1 (1991), 7-29.  doi: 10.1007/BF00123956.  Google Scholar

[11]

N. Pace and A. Sonnino, On linear codes admitting large automorphism groups, Des. Codes Cryptogr., 83 (2017), 115-143.  doi: 10.1007/s10623-016-0207-6.  Google Scholar

[12]

K. J. C. Smith, On the $p$-rank of the incidence matrix of points in hyperplanes in a finite projective geometry, J. Combin. Theory, 7 (1969), 122-129.  doi: 10.1016/S0021-9800(69)80046-3.  Google Scholar

[13]

P. Vandendriessche, Codes of Desarguesian projective planes of even order, projective triads and $(q + t, t)$-arcs of type $(0, 2, t)$, Finite Fields Appl., 17 (2011), 521-531.  doi: 10.1016/j.ffa.2011.03.003.  Google Scholar

[14]

P. Vandendriessche, Intertwined Results on Linear Codes and Galois Geometries, Ph.D thesis, Ghent University, Faculty of Sciences, Ghent, Belgium, 2014. https://cage.ugent.be/geometry/theses.php. Google Scholar

show all references

References:
[1] E. F. AssmusJr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.  Google Scholar
[2]

D. Crnković and N. Mostarac, PD-sets for codes related to flag-transitive symmetric designs, Trans. Comb., 7 (2018), 37-50.  doi: 10.22108/toc.2017.21615.  Google Scholar

[3]

D. M. Gordon, Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory, 28 (1982), 541-543.  doi: 10.1109/TIT.1982.1056504.  Google Scholar

[4]

J. W. P. Hirschfeld, Projective Geometries Over Finite Fields, 2nd edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[5]

W. C. Huffman, Codes and groups, Handbook of Coding Theory, North-Holland, Amsterdam, 1, 2 (1998), 1345-1440.   Google Scholar

[6]

J. D. Key, Permutation decoding for codes from designs, finite geometries and graphs, Information Security, Coding Theory and Related Combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., IOS, Amsterdam, 29 (2011), 172-201.   Google Scholar

[7]

J. D. KeyT. P. McDonough and V. C. Mavron, Partial permutation decoding for codes from finite planes, European J. Combin., 26 (2005), 665-682.  doi: 10.1016/j.ejc.2004.04.007.  Google Scholar

[8]

J. MacWilliams, Permutation decoding of systematic codes, Bell Syst. Tech. J., 43 (1964), 485-505.  doi: 10.1002/j.1538-7305.1964.tb04075.x.  Google Scholar

[9]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[10]

G. E. Moorhouse, Bruck nets, codes, and characters of loops, Des. Codes Cryptogr., 1 (1991), 7-29.  doi: 10.1007/BF00123956.  Google Scholar

[11]

N. Pace and A. Sonnino, On linear codes admitting large automorphism groups, Des. Codes Cryptogr., 83 (2017), 115-143.  doi: 10.1007/s10623-016-0207-6.  Google Scholar

[12]

K. J. C. Smith, On the $p$-rank of the incidence matrix of points in hyperplanes in a finite projective geometry, J. Combin. Theory, 7 (1969), 122-129.  doi: 10.1016/S0021-9800(69)80046-3.  Google Scholar

[13]

P. Vandendriessche, Codes of Desarguesian projective planes of even order, projective triads and $(q + t, t)$-arcs of type $(0, 2, t)$, Finite Fields Appl., 17 (2011), 521-531.  doi: 10.1016/j.ffa.2011.03.003.  Google Scholar

[14]

P. Vandendriessche, Intertwined Results on Linear Codes and Galois Geometries, Ph.D thesis, Ghent University, Faculty of Sciences, Ghent, Belgium, 2014. https://cage.ugent.be/geometry/theses.php. Google Scholar

Table 1.  Codes of $ \mathrm{PG}(2,q) $: lower bounds on sizes of PD-sets and $ 2 $-PD-sets
$ q $ Code $ t $ $ r $ $ b $ $ b_2 $
$ 32 $ [1057,244, 33] 16 813 180 3
$ 64 $ [4161,730, 65] 32 3431 1623 3
$ 128 $ [16513, 2188,129] 64 14325 40696 3
$ 256 $ [65793, 6562,257] 128 59231 3965945 3
$ 512 $ [262657, 19684,513] 256 242973 3625171287 3
$ q $ Code $ t $ $ r $ $ b $ $ b_2 $
$ 32 $ [1057,244, 33] 16 813 180 3
$ 64 $ [4161,730, 65] 32 3431 1623 3
$ 128 $ [16513, 2188,129] 64 14325 40696 3
$ 256 $ [65793, 6562,257] 128 59231 3965945 3
$ 512 $ [262657, 19684,513] 256 242973 3625171287 3
[1]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[2]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[3]

Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074

[4]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008

[5]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[6]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[7]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[8]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[9]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[10]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[11]

Jun Tu, Zijiao Sun, Min Huang. Supply chain coordination considering e-tailer's promotion effort and logistics provider's service effort. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021062

[12]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[13]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[14]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[15]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[16]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[17]

Kun Hu, Yuanshi Wang. Dynamics of consumer-resource systems with consumer's dispersal between patches. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021077

[18]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[19]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[20]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

2019 Impact Factor: 0.734

Article outline

Figures and Tables

[Back to Top]