• Previous Article
    New optimal error-correcting codes for crosstalk avoidance in on-chip data buses
  • AMC Home
  • This Issue
  • Next Article
    Finding small solutions of the equation $ \mathit{{Bx-Ay = z}} $ and its applications to cryptanalysis of the RSA cryptosystem
August  2021, 15(3): 471-485. doi: 10.3934/amc.2020077

Constructing self-dual codes from group rings and reverse circulant matrices

1. 

University of Chester, Department of Mathematical and Physical Sciences, Thornton Science Park, Pool Ln, Chester CH2 4NU, England

2. 

Sampoerna University, Department of Engineering Fundamentals, 12780, Jakarta, Indonesia

3. 

Northern Arizona University, Department of Mathematics & Statistics, Flagstaff, AZ 86001, USA

* Corresponding author: Adrian Korban

Received  October 2019 Revised  January 2020 Published  August 2021 Early access  April 2020

In this work, we describe a construction for self-dual codes in which we employ group rings and reverse circulant matrices. By applying the construction directly over different alphabets, and by employing the well known extension and neighbor methods we were able to obtain extremal binary self-dual codes of different lengths of which some have parameters that were not known in the literature before. In particular, we constructed three new codes of length 64, twenty-two new codes of length 68, twelve new codes of length 80 and four new codes of length 92.

Citation: Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077
References:
[1]

K. BetsumiyaS. GeorgiouT. A. GulliverM. Harada and C. Koukouvinos, On self-dual codes over some prime fields, Discrete Math., 262 (2003), 37-58.  doi: 10.1016/S0012-365X(02)00520-4.

[2]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.

[3]

S. Buyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order $2$, IEEE Trans. Inform. Theory, 44 (1998), 323-328.  doi: 10.1109/18.651059.

[4]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.

[5]

G. Dorfer and H. Maharaj, Generalized AG codes and generalized duality, Finite Fields Appl., 9 (2003), 194-210.  doi: 10.1016/S1071-5797(02)00027-8.

[6]

S. T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings, Springer Briefs in Mathematics. Springer, Cham, 2017. doi: 10.1007/978-3-319-59806-2.

[7]

S. T. DoughertyP. GaboritM. Harada and P. Solé, Type Ⅱ codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.  doi: 10.1109/18.746770.

[8]

S. T. Dougherty, J. Gildea and A. Kaya, Quadruple bordered constructions of self-dual codes from group rings over Frobenius rings, Cryptogr. Commun., 12 (2019), 127–146. https://doi.org/10.1007/s12095-019-00380-8. doi: 10.1007/s12095-019-00380-8.

[9]

S. T. DoughertyJ. GildeaA. KorbanA. KayaA. Tylshchak and B. Yildiz, Bordered constructions of self-dual codes from group rings and new extremal binary self-dual codes, Finite Fields Appl., 57 (2019), 108-127.  doi: 10.1016/j.ffa.2019.02.004.

[10]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group rings, $G$-codes and constructions of self-dual and formally self-dual codes, Des. Codes Crypt., 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.

[11]

S. T. DoughertyT. A. Gulliver and M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory, 43 (1997), 2036-2047.  doi: 10.1109/18.641574.

[12]

S. T. DoughertyJ. L. KimH. Kulosman and H. W. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.  doi: 10.1016/j.ffa.2009.11.004.

[13]

P. GaboritV. PlessP. Solé and O. Atkin, Type Ⅱ codes over $\mathbb{F}_4$, Finite Fields Appl., 8 (2002), 171-183.  doi: 10.1006/ffta.2001.0333.

[14]

J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.

[15]

J. Gildea, A. Kaya, A. Tylyshchak and B. Yildiz, A group induced four-circulant construction for self-dual codes and new extremal binary self-dual codes, Available online at: https://arXiv.org/abs/1912.11758.

[16]

J. Gildea, A. Kaya and B. Yildiz, New binary self-dual codes via a generalization of the four circulant construction, Available online at: https://arXiv.org/abs/1912.11754.

[17]

J. Gildea, A. Korban, A. Kaya and B. Yildiz, Binary generator matrices of new self-dual binary codes of lengths 64, 68, 80 and 92, available online at http://abidinkaya.wix.com/math/adrian.

[18]

T. A. Gulliver and M. Harada, Classification of extremal double circulant self-dual codes of lengths 74-88, Discr. Math., 306 (2006), 2064-2072.  doi: 10.1016/j.disc.2006.05.004.

[19]

M. Harada and A. Munemasa, Some restrictions on weight enumerators of singly even self-dual codes, IEEE Trans. Inform. Theory, 52 (2006), 1266-1269.  doi: 10.1109/TIT.2005.864416.

[20]

M. Harada and T. Nishimura, An extremal singly even self-dual codes of length 88, Advances in Mathematics of Communications, 1 (2007), 261-267.  doi: 10.3934/amc.2007.1.261.

[21]

T. Hurley, Group rings and rings of matrices, Int. Jour. Pure and Appl. Math., 31 (2006), 319-335. 

[22]

A. Kaya, New extremal binary self-dual codes of lengths 64 and 66 from $R_{2}$-lifts, Finite Fields Appl., 46 (2017), 271-279.  doi: 10.1016/j.ffa.2017.04.003.

[23]

S. Ling and P. Solé, Type Ⅱ codes over $\mathbb{F}_4+u \mathbb{F}_4$, Europ. J. Combinatorics, 22 (2001), 983-997.  doi: 10.1006/eujc.2001.0509.

[24]

E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inf. Theory, 44 (1998), 134-139.  doi: 10.1109/18.651000.

[25]

N. YankovD. Anev and M. Gürel, Self-dual codes with an automorphism of order 13, Advances in Mathematics of Communications, 11 (2017), 635-645.  doi: 10.3934/amc.2017047.

[26]

N. YankovM. H. LeeM. Gurel and M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory, 61 (2015), 1188-1193.  doi: 10.1109/TIT.2015.2396915.

[27]

N. YankovM. Ivanova and M. H. Lee, Self-dual codes with an automorphism of order 7 and $s$-extremal codes of length 68, Finite Fields Appl., 51 (2018), 17-30.  doi: 10.1016/j.ffa.2017.12.001.

[28]

N. Yankov and D. Anev, On the self-dual codes with an automorphism of order 5, AAECC, (2019). https://doi.org/10.1007/s00200-019-00403-0.

show all references

References:
[1]

K. BetsumiyaS. GeorgiouT. A. GulliverM. Harada and C. Koukouvinos, On self-dual codes over some prime fields, Discrete Math., 262 (2003), 37-58.  doi: 10.1016/S0012-365X(02)00520-4.

[2]

W. BosmaJ. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.

[3]

S. Buyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order $2$, IEEE Trans. Inform. Theory, 44 (1998), 323-328.  doi: 10.1109/18.651059.

[4]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.

[5]

G. Dorfer and H. Maharaj, Generalized AG codes and generalized duality, Finite Fields Appl., 9 (2003), 194-210.  doi: 10.1016/S1071-5797(02)00027-8.

[6]

S. T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings, Springer Briefs in Mathematics. Springer, Cham, 2017. doi: 10.1007/978-3-319-59806-2.

[7]

S. T. DoughertyP. GaboritM. Harada and P. Solé, Type Ⅱ codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.  doi: 10.1109/18.746770.

[8]

S. T. Dougherty, J. Gildea and A. Kaya, Quadruple bordered constructions of self-dual codes from group rings over Frobenius rings, Cryptogr. Commun., 12 (2019), 127–146. https://doi.org/10.1007/s12095-019-00380-8. doi: 10.1007/s12095-019-00380-8.

[9]

S. T. DoughertyJ. GildeaA. KorbanA. KayaA. Tylshchak and B. Yildiz, Bordered constructions of self-dual codes from group rings and new extremal binary self-dual codes, Finite Fields Appl., 57 (2019), 108-127.  doi: 10.1016/j.ffa.2019.02.004.

[10]

S. T. DoughertyJ. GildeaR. Taylor and A. Tylshchak, Group rings, $G$-codes and constructions of self-dual and formally self-dual codes, Des. Codes Crypt., 86 (2018), 2115-2138.  doi: 10.1007/s10623-017-0440-7.

[11]

S. T. DoughertyT. A. Gulliver and M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory, 43 (1997), 2036-2047.  doi: 10.1109/18.641574.

[12]

S. T. DoughertyJ. L. KimH. Kulosman and H. W. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl., 16 (2010), 14-26.  doi: 10.1016/j.ffa.2009.11.004.

[13]

P. GaboritV. PlessP. Solé and O. Atkin, Type Ⅱ codes over $\mathbb{F}_4$, Finite Fields Appl., 8 (2002), 171-183.  doi: 10.1006/ffta.2001.0333.

[14]

J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.

[15]

J. Gildea, A. Kaya, A. Tylyshchak and B. Yildiz, A group induced four-circulant construction for self-dual codes and new extremal binary self-dual codes, Available online at: https://arXiv.org/abs/1912.11758.

[16]

J. Gildea, A. Kaya and B. Yildiz, New binary self-dual codes via a generalization of the four circulant construction, Available online at: https://arXiv.org/abs/1912.11754.

[17]

J. Gildea, A. Korban, A. Kaya and B. Yildiz, Binary generator matrices of new self-dual binary codes of lengths 64, 68, 80 and 92, available online at http://abidinkaya.wix.com/math/adrian.

[18]

T. A. Gulliver and M. Harada, Classification of extremal double circulant self-dual codes of lengths 74-88, Discr. Math., 306 (2006), 2064-2072.  doi: 10.1016/j.disc.2006.05.004.

[19]

M. Harada and A. Munemasa, Some restrictions on weight enumerators of singly even self-dual codes, IEEE Trans. Inform. Theory, 52 (2006), 1266-1269.  doi: 10.1109/TIT.2005.864416.

[20]

M. Harada and T. Nishimura, An extremal singly even self-dual codes of length 88, Advances in Mathematics of Communications, 1 (2007), 261-267.  doi: 10.3934/amc.2007.1.261.

[21]

T. Hurley, Group rings and rings of matrices, Int. Jour. Pure and Appl. Math., 31 (2006), 319-335. 

[22]

A. Kaya, New extremal binary self-dual codes of lengths 64 and 66 from $R_{2}$-lifts, Finite Fields Appl., 46 (2017), 271-279.  doi: 10.1016/j.ffa.2017.04.003.

[23]

S. Ling and P. Solé, Type Ⅱ codes over $\mathbb{F}_4+u \mathbb{F}_4$, Europ. J. Combinatorics, 22 (2001), 983-997.  doi: 10.1006/eujc.2001.0509.

[24]

E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inf. Theory, 44 (1998), 134-139.  doi: 10.1109/18.651000.

[25]

N. YankovD. Anev and M. Gürel, Self-dual codes with an automorphism of order 13, Advances in Mathematics of Communications, 11 (2017), 635-645.  doi: 10.3934/amc.2017047.

[26]

N. YankovM. H. LeeM. Gurel and M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory, 61 (2015), 1188-1193.  doi: 10.1109/TIT.2015.2396915.

[27]

N. YankovM. Ivanova and M. H. Lee, Self-dual codes with an automorphism of order 7 and $s$-extremal codes of length 68, Finite Fields Appl., 51 (2018), 17-30.  doi: 10.1016/j.ffa.2017.12.001.

[28]

N. Yankov and D. Anev, On the self-dual codes with an automorphism of order 5, AAECC, (2019). https://doi.org/10.1007/s00200-019-00403-0.

Table 1.  Self-dual codes over $\mathbb{F}_{4}+u\mathbb{F}_{4}$ of length $64$ from $C_{2, 2}$
$\mathcal{C}_{i}$ $r_{\sigma(v_1)}$ $r_{\sigma(v_2)}$ $r_C$ $|Aut(\mathcal{C}_i)|$ $\beta$
$1$ $(0, 9, 2, 1)$ $(0, 0, A, 4)$ $(3, C, 3, 3)$ $2^{4}$ $0$
$2$ $(0, 9, 4, F)$ $(0, 0, 0, 6)$ $(2, 5, 2, 2)$ $2^{5}$ $0$
$\mathcal{C}_{i}$ $r_{\sigma(v_1)}$ $r_{\sigma(v_2)}$ $r_C$ $|Aut(\mathcal{C}_i)|$ $\beta$
$1$ $(0, 9, 2, 1)$ $(0, 0, A, 4)$ $(3, C, 3, 3)$ $2^{4}$ $0$
$2$ $(0, 9, 4, F)$ $(0, 0, 0, 6)$ $(2, 5, 2, 2)$ $2^{5}$ $0$
Table 2.  Extremal Self-dual codes of length $68$ from Theorem 2.1
$\mathcal{M}_{68, i}$ $\mathcal{C}_i$ $c$ $X$ $\gamma$ $\beta$ $|Aut(\mathcal{M}_{68, i})|$
$1$ $1$ $1$ $(3u0u01u103103030u01u0u0301u10013)$ $\bf{0}$ $\bf{40}$ $2$
$2$ $2$ $u+1$ $(33313311u3uu13110u1030u1u31u31u3)$ $\bf{3}$ $\bf{77}$ $2$
$\mathcal{M}_{68, i}$ $\mathcal{C}_i$ $c$ $X$ $\gamma$ $\beta$ $|Aut(\mathcal{M}_{68, i})|$
$1$ $1$ $1$ $(3u0u01u103103030u01u0u0301u10013)$ $\bf{0}$ $\bf{40}$ $2$
$2$ $2$ $u+1$ $(33313311u3uu13110u1030u1u31u31u3)$ $\bf{3}$ $\bf{77}$ $2$
Table 3.  Self-dual codes over $ \mathbb{F}_{2}+u\mathbb{F}_{2} $ of length $ 64 $ from $ C_{4,2} $
$ \mathcal{E}_{i} $ $ r_{\sigma(v_1)} $ $ r_{\sigma(v_2)} $ $ r_C $ $ |Aut(\mathcal{E}_i)| $ $ \beta $
$ 1 $ $ (u,0,1,1,u,u,u,u) $ $ (u,u,1,1,0,u,u,3) $ $ (0,1,0,1,0,1,0,1) $ $ 2^5 $ $ 0 $
$ 2 $ $ (u,u,1,3,u,u,u,u) $ $ (u,u,1,1,u,u,0,3) $ $ (u,3,u,3,u,3,u,3) $ $ 2^6 $ $ 0 $
$ 3 $ $ (u,0,u,u,0,0,1,3) $ $ (u,u,0,1,u,0,3,1) $ $ (3,3,3,3,3,3,3,3) $ $ 2^7 $ $ 80 $
$ \mathcal{E}_{i} $ $ r_{\sigma(v_1)} $ $ r_{\sigma(v_2)} $ $ r_C $ $ |Aut(\mathcal{E}_i)| $ $ \beta $
$ 1 $ $ (u,0,1,1,u,u,u,u) $ $ (u,u,1,1,0,u,u,3) $ $ (0,1,0,1,0,1,0,1) $ $ 2^5 $ $ 0 $
$ 2 $ $ (u,u,1,3,u,u,u,u) $ $ (u,u,1,1,u,u,0,3) $ $ (u,3,u,3,u,3,u,3) $ $ 2^6 $ $ 0 $
$ 3 $ $ (u,0,u,u,0,0,1,3) $ $ (u,u,0,1,u,0,3,1) $ $ (3,3,3,3,3,3,3,3) $ $ 2^7 $ $ 80 $
Table 4.  New codes of length 64 as neighbors
$ \mathcal{L}_{64,i} $ $ \mathcal{E}_{i} $ $ (x_{33},...,x_{64}) $ $ W_{64,i} $ $ \beta $ $ |Aut(\mathcal{L}_{64,i})| $
$ 1 $ $ 3 $ $ (01110001001001101000011001011111) $ $ 1 $ $ \bf{58} $ $ 2^2 $
$ 2 $ $ 3 $ $ (11011001001101110110010110011010) $ $ 2 $ $ \bf{54} $ $ 2^3 $
$ 3 $ $ 3 $ $ (11111100101011111001111001010010) $ $ 2 $ $ \bf{62} $ $ 2 $
$ \mathcal{L}_{64,i} $ $ \mathcal{E}_{i} $ $ (x_{33},...,x_{64}) $ $ W_{64,i} $ $ \beta $ $ |Aut(\mathcal{L}_{64,i})| $
$ 1 $ $ 3 $ $ (01110001001001101000011001011111) $ $ 1 $ $ \bf{58} $ $ 2^2 $
$ 2 $ $ 3 $ $ (11011001001101110110010110011010) $ $ 2 $ $ \bf{54} $ $ 2^3 $
$ 3 $ $ 3 $ $ (11111100101011111001111001010010) $ $ 2 $ $ \bf{62} $ $ 2 $
Table 5.  Extremal Self-dual codes of length $ 68 $ from Theorem 2.1
$ \mathcal{N}_{68,i} $ $ \mathcal{E}_i $ $ c $ $ X $ $ \gamma $ $ \beta $ $ |Aut(\mathcal{N}_{68,i})| $
$ 1 $ $ 1 $ $ 3 $ $ (01330u3131uuu3330uuuu000333u1u1u) $ $ \bf{0} $ $ \bf{39} $ $ 2 $
$ 2 $ $ 2 $ $ 1 $ $ (0013u1111uu1u0uuuu101u1333330130) $ $ \bf{3} $ $ \bf{79} $ $ 2 $
$ 3 $ $ 2 $ $ 1 $ $ (u30u1u03u10uu113uuu01131u111u030) $ $ \bf{3} $ $ \bf{85} $ $ 2 $
$ \mathcal{N}_{68,i} $ $ \mathcal{E}_i $ $ c $ $ X $ $ \gamma $ $ \beta $ $ |Aut(\mathcal{N}_{68,i})| $
$ 1 $ $ 1 $ $ 3 $ $ (01330u3131uuu3330uuuu000333u1u1u) $ $ \bf{0} $ $ \bf{39} $ $ 2 $
$ 2 $ $ 2 $ $ 1 $ $ (0013u1111uu1u0uuuu101u1333330130) $ $ \bf{3} $ $ \bf{79} $ $ 2 $
$ 3 $ $ 2 $ $ 1 $ $ (u30u1u03u10uu113uuu01131u111u030) $ $ \bf{3} $ $ \bf{85} $ $ 2 $
Table 6.  $ [80,40,14] $ Self-dual codes over $ \mathbb{F}_{4}+u \mathbb{F}_{4} $ from $ C_{5} $
$ \mathcal{D}_{i} $ $ r_{\sigma(v_1)} $ $ r_{\sigma(v_2)} $ $ r_C $ $ |Aut(\mathcal{D}_i)| $ $ (\beta,\alpha) $
$ 1 $ $ (A,A,A,1,3) $ $ (0,2,1,3,E) $ $ (7,7,7,7,7) $ $ 2^3 \cdot 5 $ $ (0,-120) $
$ 2 $ $ (0,A,2,6,F) $ $ (2,1,E,2,1) $ $ (6,6,6,6,6) $ $ 2^2 \cdot 5 $ $ (0,-125) $
$ 3 $ $ (A,A,0,4,F) $ $ (2,A,6,2,F) $ $ (1,1,1,1,1) $ $ 2^2 \cdot 5 $ $ (0,-150) $
$ 4 $ $ (0,A,A,4,5) $ $ (0,3,6,A,B) $ $ (E,E,E,E,E) $ $ 2^2 \cdot 5 $ $ (0,-155) $
$ 5 $ $ (2,0,A,4,5) $ $ (2,A,4,0,5) $ $ (B,B,B,B,B) $ $ 2^2 \cdot 5 $ $ (0,-180) $
$ 6 $ $ (0,A,B,B,E) $ $ (0,2,1,3,1) $ $ (6,6,6,6,6) $ $ 2^2 \cdot 5 $ $ (0,-190) $
$ 7 $ $ (0,A,2,6,F) $ $ (2,2,6,2,7) $ $ (B,B,B,B,B) $ $ 2^2 \cdot 5 $ $ (0,-200) $
$ 8 $ $ (0,0,A,6,F) $ $ (2,1,E,0,3) $ $ (6,6,6,6,6) $ $ 2^2 \cdot 5 $ $ (0,-215) $
$ 9 $ $ (A,0,1,4,7) $ $ (0,3,E,2,7) $ $ (B,B,B,B,B) $ $ 2^2 \cdot 5 $ $ (0,-230) $
$ 10 $ $ (A,2,A,1,4) $ $ (0,0,7,1,F) $ $ (7,7,7,7,7) $ $ 2^2 \cdot 5 $ $ (0,-250) $
$ 11 $ $ (A,A,3,B,4) $ $ (0,A,4,0,7) $ $ (4,4,4,4,4) $ $ 2^2 \cdot 5 $ $ (0,-275) $
$ 12 $ $ (0,2,B,1,E) $ $ (0,0,1,1,3) $ $ (4,4,4,4,4) $ $ 2^2 \cdot 5 $ $ (10,-370) $
$ \mathcal{D}_{i} $ $ r_{\sigma(v_1)} $ $ r_{\sigma(v_2)} $ $ r_C $ $ |Aut(\mathcal{D}_i)| $ $ (\beta,\alpha) $
$ 1 $ $ (A,A,A,1,3) $ $ (0,2,1,3,E) $ $ (7,7,7,7,7) $ $ 2^3 \cdot 5 $ $ (0,-120) $
$ 2 $ $ (0,A,2,6,F) $ $ (2,1,E,2,1) $ $ (6,6,6,6,6) $ $ 2^2 \cdot 5 $ $ (0,-125) $
$ 3 $ $ (A,A,0,4,F) $ $ (2,A,6,2,F) $ $ (1,1,1,1,1) $ $ 2^2 \cdot 5 $ $ (0,-150) $
$ 4 $ $ (0,A,A,4,5) $ $ (0,3,6,A,B) $ $ (E,E,E,E,E) $ $ 2^2 \cdot 5 $ $ (0,-155) $
$ 5 $ $ (2,0,A,4,5) $ $ (2,A,4,0,5) $ $ (B,B,B,B,B) $ $ 2^2 \cdot 5 $ $ (0,-180) $
$ 6 $ $ (0,A,B,B,E) $ $ (0,2,1,3,1) $ $ (6,6,6,6,6) $ $ 2^2 \cdot 5 $ $ (0,-190) $
$ 7 $ $ (0,A,2,6,F) $ $ (2,2,6,2,7) $ $ (B,B,B,B,B) $ $ 2^2 \cdot 5 $ $ (0,-200) $
$ 8 $ $ (0,0,A,6,F) $ $ (2,1,E,0,3) $ $ (6,6,6,6,6) $ $ 2^2 \cdot 5 $ $ (0,-215) $
$ 9 $ $ (A,0,1,4,7) $ $ (0,3,E,2,7) $ $ (B,B,B,B,B) $ $ 2^2 \cdot 5 $ $ (0,-230) $
$ 10 $ $ (A,2,A,1,4) $ $ (0,0,7,1,F) $ $ (7,7,7,7,7) $ $ 2^2 \cdot 5 $ $ (0,-250) $
$ 11 $ $ (A,A,3,B,4) $ $ (0,A,4,0,7) $ $ (4,4,4,4,4) $ $ 2^2 \cdot 5 $ $ (0,-275) $
$ 12 $ $ (0,2,B,1,E) $ $ (0,0,1,1,3) $ $ (4,4,4,4,4) $ $ 2^2 \cdot 5 $ $ (10,-370) $
Table 7.  Self-dual codes over $ \mathbb{F}_{2} $ of length $ 68 $ from $ C_{17} $
$ \mathcal{C}_{i} $ $ r_{\sigma(v_1)} $ $ r_{\sigma(v_2)} $ $ \gamma $ $ \beta $ $ |Aut(\mathcal{C}_i)| $
$ 1 $ $ (0,0,0,0,0,0,0,1,1,0,1,1,0,1,1,1,1) $ $ (0,0,0,1,0,0,0,1,1,1,0,0,1,0,1,1,1) $ $ 0 $ $ 255 $ $ 2 \cdot 17 $
$ 2 $ $ (0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,1) $ $ (0,0,0,1,0,1,1,1,1,0,1,1,0,1,1,1,1) $ $ 0 $ $ 272 $ $ 2^2 \cdot 17 $
$ \mathcal{C}_{i} $ $ r_{\sigma(v_1)} $ $ r_{\sigma(v_2)} $ $ \gamma $ $ \beta $ $ |Aut(\mathcal{C}_i)| $
$ 1 $ $ (0,0,0,0,0,0,0,1,1,0,1,1,0,1,1,1,1) $ $ (0,0,0,1,0,0,0,1,1,1,0,0,1,0,1,1,1) $ $ 0 $ $ 255 $ $ 2 \cdot 17 $
$ 2 $ $ (0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,1) $ $ (0,0,0,1,0,1,1,1,1,0,1,1,0,1,1,1,1) $ $ 0 $ $ 272 $ $ 2^2 \cdot 17 $
Table 8.  New codes of length 68 as neighbors
$ \mathcal{N}_{68,i} $ $ \mathcal{C}_{i} $ $ (x_{35},x_{36},...,x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{68,i} $ $ \mathcal{C}_{i} $ $ (x_{35},x_{36},...,x_{68}) $ $ \gamma $ $ \beta $
$ \mathcal{N}_{68,1} $ $ \mathcal{C}_{1} $ $ (1001110010101010011000001000111011) $ $ \boldsymbol{0} $ $ \boldsymbol{183} $ $ \mathcal{N}_{68,2} $ $ \mathcal{C}_{1} $ $ (1101000000010001110101011010100001) $ $ \boldsymbol{0} $ $ \boldsymbol{185} $
$ \mathcal{N}_{68,3} $ $ \mathcal{C}_{1} $ $ (0001000010011000110101100010101000) $ $ \boldsymbol{0} $ $ \boldsymbol{189} $ $ \mathcal{N}_{68,4} $ $ \mathcal{C}_{1} $ $ (0100000001110110100011110011101111) $ $ \boldsymbol{0} $ $ \boldsymbol{191} $
$ \mathcal{N}_{68,5} $ $ \mathcal{C}_{1} $ $ (0110110001001000110010110111100001) $ $ \boldsymbol{0} $ $ \boldsymbol{193} $ $ \mathcal{N}_{68,6} $ $ \mathcal{C}_{2} $ $ (0000001110101000111001011000001101) $ $ \boldsymbol{0} $ $ \boldsymbol{195} $
$ \mathcal{N}_{68,7} $ $ \mathcal{C}_{2} $ $ (1001000111000100110010000111111111) $ $ \boldsymbol{0} $ $ \boldsymbol{197} $ $ \mathcal{N}_{68,8} $ $ \mathcal{C}_{2} $ $ (0110100100000001010000101001011100) $ $ \boldsymbol{0} $ $ \boldsymbol{199} $
$ \mathcal{N}_{68,9} $ $ \mathcal{C}_{2} $ $ (1010111001110010001010100100011010) $ $ \boldsymbol{0} $ $ \boldsymbol{200} $ $ \mathcal{N}_{68,10} $ $ \mathcal{C}_{2} $ $ (0000000100000111100111110000110110) $ $ \boldsymbol{0} $ $ \boldsymbol{203} $
$ \mathcal{N}_{68,11} $ $ \mathcal{C}_{1} $ $ (1001010000011000011101100011101101) $ $ \boldsymbol{1} $ $ \boldsymbol{189} $ $ \mathcal{N}_{68,12} $ $ \mathcal{C}_{1} $ $ (0110100111000110000001001001100011) $ $ \boldsymbol{1} $ $ \boldsymbol{201} $
$ \mathcal{N}_{68,13} $ $ \mathcal{C}_{1} $ $ (1010011111110001111001110111001110) $ $ \boldsymbol{1} $ $ \boldsymbol{203} $ $ \mathcal{N}_{68,14} $ $ \mathcal{C}_{1} $ $ (1111011111101101100101100000010101) $ $ \boldsymbol{1} $ $ \boldsymbol{205} $
$ \mathcal{N}_{68,15} $ $ \mathcal{C}_{1} $ $ (1011110111111110101101111111101111) $ $ \boldsymbol{1} $ $ \boldsymbol{213} $ $ \mathcal{N}_{68,16} $ $ \mathcal{C}_{2} $ $ (1010001111110100000010100011101001) $ $ \boldsymbol{1} $ $ \boldsymbol{216} $
$ \mathcal{N}_{68,17} $ $ \mathcal{C}_{1} $ $ (1011110011111011001101111100111101) $ $ \boldsymbol{1} $ $ \boldsymbol{217} $ $ \mathcal{N}_{68,18} $ $ \mathcal{C}_{2} $ $ (0000010011001100100101011101110101) $ $ \boldsymbol{1} $ $ \boldsymbol{233} $
$ \mathcal{N}_{68,i} $ $ \mathcal{C}_{i} $ $ (x_{35},x_{36},...,x_{68}) $ $ \gamma $ $ \beta $ $ \mathcal{N}_{68,i} $ $ \mathcal{C}_{i} $ $ (x_{35},x_{36},...,x_{68}) $ $ \gamma $ $ \beta $
$ \mathcal{N}_{68,1} $ $ \mathcal{C}_{1} $ $ (1001110010101010011000001000111011) $ $ \boldsymbol{0} $ $ \boldsymbol{183} $ $ \mathcal{N}_{68,2} $ $ \mathcal{C}_{1} $ $ (1101000000010001110101011010100001) $ $ \boldsymbol{0} $ $ \boldsymbol{185} $
$ \mathcal{N}_{68,3} $ $ \mathcal{C}_{1} $ $ (0001000010011000110101100010101000) $ $ \boldsymbol{0} $ $ \boldsymbol{189} $ $ \mathcal{N}_{68,4} $ $ \mathcal{C}_{1} $ $ (0100000001110110100011110011101111) $ $ \boldsymbol{0} $ $ \boldsymbol{191} $
$ \mathcal{N}_{68,5} $ $ \mathcal{C}_{1} $ $ (0110110001001000110010110111100001) $ $ \boldsymbol{0} $ $ \boldsymbol{193} $ $ \mathcal{N}_{68,6} $ $ \mathcal{C}_{2} $ $ (0000001110101000111001011000001101) $ $ \boldsymbol{0} $ $ \boldsymbol{195} $
$ \mathcal{N}_{68,7} $ $ \mathcal{C}_{2} $ $ (1001000111000100110010000111111111) $ $ \boldsymbol{0} $ $ \boldsymbol{197} $ $ \mathcal{N}_{68,8} $ $ \mathcal{C}_{2} $ $ (0110100100000001010000101001011100) $ $ \boldsymbol{0} $ $ \boldsymbol{199} $
$ \mathcal{N}_{68,9} $ $ \mathcal{C}_{2} $ $ (1010111001110010001010100100011010) $ $ \boldsymbol{0} $ $ \boldsymbol{200} $ $ \mathcal{N}_{68,10} $ $ \mathcal{C}_{2} $ $ (0000000100000111100111110000110110) $ $ \boldsymbol{0} $ $ \boldsymbol{203} $
$ \mathcal{N}_{68,11} $ $ \mathcal{C}_{1} $ $ (1001010000011000011101100011101101) $ $ \boldsymbol{1} $ $ \boldsymbol{189} $ $ \mathcal{N}_{68,12} $ $ \mathcal{C}_{1} $ $ (0110100111000110000001001001100011) $ $ \boldsymbol{1} $ $ \boldsymbol{201} $
$ \mathcal{N}_{68,13} $ $ \mathcal{C}_{1} $ $ (1010011111110001111001110111001110) $ $ \boldsymbol{1} $ $ \boldsymbol{203} $ $ \mathcal{N}_{68,14} $ $ \mathcal{C}_{1} $ $ (1111011111101101100101100000010101) $ $ \boldsymbol{1} $ $ \boldsymbol{205} $
$ \mathcal{N}_{68,15} $ $ \mathcal{C}_{1} $ $ (1011110111111110101101111111101111) $ $ \boldsymbol{1} $ $ \boldsymbol{213} $ $ \mathcal{N}_{68,16} $ $ \mathcal{C}_{2} $ $ (1010001111110100000010100011101001) $ $ \boldsymbol{1} $ $ \boldsymbol{216} $
$ \mathcal{N}_{68,17} $ $ \mathcal{C}_{1} $ $ (1011110011111011001101111100111101) $ $ \boldsymbol{1} $ $ \boldsymbol{217} $ $ \mathcal{N}_{68,18} $ $ \mathcal{C}_{2} $ $ (0000010011001100100101011101110101) $ $ \boldsymbol{1} $ $ \boldsymbol{233} $
Table 9.  Self-dual codes over $ \mathbb{F}_{2} $ of length $ 92 $ from $ C_{23} $
$ \mathcal{C}_{i} $ $ r_{\sigma(v_1)} $ $ r_{\sigma(v_2)} $ $ \gamma $ $ \beta $ $ |Aut(\mathcal{C}_i)| $ Type
$ 1 $ $ (0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,1,1,0,1,1,1) $ $ (0,0,0,0,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,0,1,1,1) $ $ 0 $ $ \textbf{759} $ $ 2 \cdot 23 $ $ W_{92,1} $
$ 3 $ $ (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1) $ $ (0,0,0,0,1,1,0,0,0,1,1,0,1,0,0,1,1,0,1,0,1,1,1) $ $ 0 $ $ \textbf{1012} $ $ 2 \cdot 23 $ $ W_{92,1} $
$ 13 $ $ (0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,1) $ $ (0,0,0,0,1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,1) $ $ -46 $ $ \textbf{1564} $ $ 2^2 \cdot 23 $ $ W_{92,1} $
$ 16 $ $ (0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,1,1) $ $ (0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,1,0,0,0,1) $ $ -46 $ $ \textbf{1978} $ $ 2 \cdot 23 $ $ W_{92,1} $
$ \mathcal{C}_{i} $ $ r_{\sigma(v_1)} $ $ r_{\sigma(v_2)} $ $ \gamma $ $ \beta $ $ |Aut(\mathcal{C}_i)| $ Type
$ 1 $ $ (0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,1,1,0,1,1,1) $ $ (0,0,0,0,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,0,1,1,1) $ $ 0 $ $ \textbf{759} $ $ 2 \cdot 23 $ $ W_{92,1} $
$ 3 $ $ (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,1,1) $ $ (0,0,0,0,1,1,0,0,0,1,1,0,1,0,0,1,1,0,1,0,1,1,1) $ $ 0 $ $ \textbf{1012} $ $ 2 \cdot 23 $ $ W_{92,1} $
$ 13 $ $ (0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,1) $ $ (0,0,0,0,1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,1) $ $ -46 $ $ \textbf{1564} $ $ 2^2 \cdot 23 $ $ W_{92,1} $
$ 16 $ $ (0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,0,1,1) $ $ (0,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,1,1,0,0,0,1) $ $ -46 $ $ \textbf{1978} $ $ 2 \cdot 23 $ $ W_{92,1} $
[1]

Joe Gildea, Abidin Kaya, Adam Michael Roberts, Rhian Taylor, Alexander Tylyshchak. New self-dual codes from $ 2 \times 2 $ block circulant matrices, group rings and neighbours of neighbours. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021039

[2]

Steven T. Dougherty, Joe Gildea, Adrian Korban, Abidin Kaya. Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68. Advances in Mathematics of Communications, 2020, 14 (4) : 677-702. doi: 10.3934/amc.2020037

[3]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[4]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[5]

Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2020, 14 (2) : 319-332. doi: 10.3934/amc.2020023

[6]

Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002

[7]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[8]

Suat Karadeniz, Bahattin Yildiz. Double-circulant and bordered-double-circulant constructions for self-dual codes over $R_2$. Advances in Mathematics of Communications, 2012, 6 (2) : 193-202. doi: 10.3934/amc.2012.6.193

[9]

Maria Bortos, Joe Gildea, Abidin Kaya, Adrian Korban, Alexander Tylyshchak. New self-dual codes of length 68 from a $ 2 \times 2 $ block matrix construction and group rings. Advances in Mathematics of Communications, 2022, 16 (2) : 269-284. doi: 10.3934/amc.2020111

[10]

Christos Koukouvinos, Dimitris E. Simos. Construction of new self-dual codes over $GF(5)$ using skew-Hadamard matrices. Advances in Mathematics of Communications, 2009, 3 (3) : 251-263. doi: 10.3934/amc.2009.3.251

[11]

T. Aaron Gulliver, Masaaki Harada, Hiroki Miyabayashi. Double circulant and quasi-twisted self-dual codes over $\mathbb F_5$ and $\mathbb F_7$. Advances in Mathematics of Communications, 2007, 1 (2) : 223-238. doi: 10.3934/amc.2007.1.223

[12]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[13]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[14]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[15]

Adrian Korban, Serap Şahinkaya, Deniz Ustun. New type i binary [72, 36, 12] self-dual codes from composite matrices and R1 lifts. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021034

[16]

Adrian Korban, Serap Sahinkaya, Deniz Ustun. New type I binary $[72, 36, 12]$ self-dual codes from $M_6(\mathbb{F}_2)G$ - Group matrix rings by a hybrid search technique based on a neighbourhood-virus optimisation algorithm. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022032

[17]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[18]

Ken Saito. Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs. Advances in Mathematics of Communications, 2019, 13 (2) : 213-220. doi: 10.3934/amc.2019014

[19]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[20]

Amita Sahni, Poonam Trama Sehgal. Enumeration of self-dual and self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (4) : 437-447. doi: 10.3934/amc.2015.9.437

2020 Impact Factor: 0.935

Metrics

  • PDF downloads (320)
  • HTML views (714)
  • Cited by (0)

[Back to Top]