August  2021, 15(3): 525-537. doi: 10.3934/amc.2020080

The differential spectrum of a class of power functions over finite fields

1. 

School of Mathematics, Southwest Jiaotong University, Chengdu, 610031, China

2. 

State Key Laboratory of Cryptology, P. O. Box 5159, Beijing, 100878, China

3. 

College of Mathematical sciences, Dezhou University, Dezhou, 253023, China

Corresponding author: Cuiling Fan

Received  October 2019 Revised  January 2020 Published  April 2020

Fund Project: The work of L. Lei and C. Fan was supported by the National Natural Science Foundation of China under Grant 11971395, and partially supported by National Cryptography Development Fund under Grant MMJJ20180103. The work of W. Ren was supported by Natural Science Foundation of Shandong Province under Grant ZR2018LA001

Functions with good differential-uniformity properties have important applications in coding theory and sequence design in addition to the applications in cryptography. The differential spectrum of a cryptographic function is useful for estimating its resistance to some variants of differential cryptanalysis. The objective of this paper is to determine the differential spectrum of the power function $ x^{p^{2k}-p^k+1} $ over $ \mathbb F_{p^n} $, where $ p $ is an odd prime, $ n, k, e $ are integers with $ \gcd(n,k) = e $ and $ \frac{n}{e} $ being odd. In particular, when $ n $ is odd and $ e = 1 $, our result includes a recent one (IEEE Trans. Inform. Theory 65(10): 6819-6826) as a special case.

Citation: Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080
References:
[1]

T. P. BergerA. CanteautP. Charpin and Y. Laigle-Chapuy, On almost perfect nonlinear functions over $F_{2^n}$, IEEE Trans. Inform. Theory, 52 (2006), 4160-4170.  doi: 10.1109/TIT.2006.880036.  Google Scholar

[2]

E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J. Cryptology, 4 (1991), 3-72.  doi: 10.1007/BF00630563.  Google Scholar

[3]

C. BlondeauA. Canteaut and P. Charpin, Differential properties of power functions, Int. J. Inf. Coding Theory, 1 (2010), 149-170.  doi: 10.1504/IJICOT.2010.032132.  Google Scholar

[4]

C. BlondeauA. Canteaut and P. Charpin, Differential properties of $x \mapsto x^{2^t-1}$, IEEE Trans. Inform. Theory, 57 (2011), 8127-8137.  doi: 10.1109/TIT.2011.2169129.  Google Scholar

[5]

C. Blondeau and L. Perrin, More differentially $6$-uniform power functions, Des. Codes Cryptogr., 73 (2014), 487-505.  doi: 10.1007/s10623-014-9948-2.  Google Scholar

[6]

A. Canteaut and M. Videau, Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis, Advances in Cryptology - EUROCRYPT, Lecture Notes in Comput. Sci., Springer, Berlin, 2332 (2002), 518-533.  doi: 10.1007/3-540-46035-7_34.  Google Scholar

[7]

C. CarletP. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr., 15 (1998), 125-156.  doi: 10.1023/A:1008344232130.  Google Scholar

[8]

C. Carlet and C. S. Ding, Highly nonlinear mappings, J. Complexity, 20 (2004), 205-244.  doi: 10.1016/j.jco.2003.08.008.  Google Scholar

[9]

C. CarletC. S. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inform. Theory, 51 (2005), 2089-2102.  doi: 10.1109/TIT.2005.847722.  Google Scholar

[10]

S.-T. ChoiS. HongJ.-S. No and H. Chung, Differential spectrum of some power functions in odd prime characteristic, Finite Fields Appl., 21 (2013), 11-29.  doi: 10.1016/j.ffa.2013.01.002.  Google Scholar

[11]

R. S. Coulter and R. W. Matthews, Planar functions and planes of Lenz-Barlotti class II, Des. Codes Cryptogr., 10 (1997), 167-184.  doi: 10.1023/A:1008292303803.  Google Scholar

[12]

N. T. Courtois and J. Pieprzyk, Cryptanalysis of block ciphers with overdefined systems of equations, Advances in Cryptology - ASIACRYPT, Lecture Notes in Comput. Sci., Springer, Berlin, 2501 (2002), 267-287.  doi: 10.1007/3-540-36178-2_17.  Google Scholar

[13]

C. S. DingM. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606-2610.  doi: 10.1109/TIT.2007.899545.  Google Scholar

[14]

C. S. Ding and J. Yuan, A family of skew Hadamard difference sets, J. Comb. Theory, Ser. A, 113 (2006), 1526-1535.  doi: 10.1016/j.jcta.2005.10.006.  Google Scholar

[15]

H. DobbertinD. MillsE. N. Muller and A. P. Willems, APN functions in odd characteristic, Discrete Math., 267 (2003), 95-112.  doi: 10.1016/S0012-365X(02)00606-4.  Google Scholar

[16]

H. Dobbertin, Almost perfect nonlinear power functions on $GF(2^n)$: The Welch case, IEEE Trans. Inform. Theory, 45 (1999), 1271-1275.  doi: 10.1109/18.761283.  Google Scholar

[17]

Y. EdelG. Kyureghyan and A. Pott, A new APN functions which is not equivalent to a power mapping, IEEE Trans. Inform. Theory, 52 (2006), 744-747.  doi: 10.1109/TIT.2005.862128.  Google Scholar

[18]

T. HellesethC. M. Rong and D. Sandberg, New families of almost perfect nonlinear power mapping, IEEE Trans. Inform. Theory, 45 (1999), 475-485.  doi: 10.1109/18.748997.  Google Scholar

[19]

T. Helleseth and D. Sandberg, Some power mappings with low differential uniformity, Appl. Algebra Engrg. Comm. Comput., 8 (1997), 363-370.  doi: 10.1007/s002000050073.  Google Scholar

[20]

T. Helleseth, Some results about the cross-correlation function between two maximal linear sequences, Discrete Math., 16 (1976), 209-232.  doi: 10.1016/0012-365X(76)90100-X.  Google Scholar

[21]

T. Jakobsen and L. R. Knudsen, The interpolation attack on block ciphers, Fast Software Encryption - FSE, Lecture Notes in Comput. Sci., Springer, Berlin, 1267 (1997), 28-40.  doi: 10.1007/BFb0052332.  Google Scholar

[22]

P. V. Kumar and O. Moreno, Prime-phase sequences with periodic correlation properties better than binary sequences, IEEE Trans. Inform. Theory, 37 (1991), 603-616.  doi: 10.1109/18.79916.  Google Scholar

[23] R. Lidl and H. Niederreiter, Finite Fields, Second edition, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.   Google Scholar
[24]

S. X. MaH. L. ZhangW. D. Jin and X. H. Niu, A new family of optimal ternary cyclic codes, IEICE Trans. Fund., E97 (2014), 690-693.  doi: 10.1587/transfun.E97.A.690.  Google Scholar

[25]

G. J. Ness and T. Helleseth, A new family of ternary almost perfect nonlinear mappings, IEEE Trans. Inform. Theory, 53 (2007), 2581-2586.  doi: 10.1109/TIT.2007.899508.  Google Scholar

[26]

A. Pott, Almost perfect and planar functions, Des. Codes Cryptogr., 78 (2016), 141-195.  doi: 10.1007/s10623-015-0151-x.  Google Scholar

[27]

H. Trachtenberg, On the Cross-Correlation Functions of Maximal Linear Sequences, Ph. D. thesis, University of Southern California, 1970. Google Scholar

[28]

M. S. Xiong and H. D. Yan, A note on the differential spectrum of a differentially 4-uniform power function, Finite Fields Appl., 48 (2017), 117-125.  doi: 10.1016/j.ffa.2017.07.008.  Google Scholar

[29]

M. S. XiongH. D. Yan and P. Z. Yuan, On a conjecture of differentially 8-uniform power functions, Des. Codes Cryptogr., 86 (2018), 1601-1621.  doi: 10.1007/s10623-017-0416-7.  Google Scholar

[30]

G. K. XuX. W. Cao and S. D. Xu, Several classes of polynomials with low differential uniformity over finite fields of odd characteristic, Appl. Algebra Engrg. Comm. Comput., 27 (2016), 91-103.  doi: 10.1007/s00200-015-0272-5.  Google Scholar

[31]

H. D. Yan and D. C. Han, A class of 3-uniform ternary power function and related codes, IEICE Trans. Fund., E102-A (2019), 849-853.   Google Scholar

[32]

H. D. YanZ. C. ZhouJ. WengJ. M. WenT. Helleseth and Q. Wang, Differencial spectrum of Kasami power permutation over odd characteristic finite fields, IEEE Trans. Inform. Theory, 65 (2019), 6819-6826.  doi: 10.1109/TIT.2019.2910070.  Google Scholar

[33]

X. Y. ZengL. HuW. F. JiangQ. Yue and X. W. Cao, The weight distribution of a class of $p$-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.  doi: 10.1016/j.ffa.2009.12.001.  Google Scholar

[34]

Z. B. Zha and X. L. Wang, Almost perfect nonlinear power functions in odd characteristic, IEEE Trans. Inform. Theory, 57 (2011), 4826-4832.  doi: 10.1109/TIT.2011.2145130.  Google Scholar

[35]

Z. B. Zha and X. L. Wang, Power functions with low uniformity on odd characteristic finite fields, Sci. China Math., 53 (2010), 1931-1940.  doi: 10.1007/s11425-010-3149-x.  Google Scholar

[36]

Z. C. Zhou and C. S. Ding, A class of three-weight codes, Finite Fields Appl., 25 (2014), 79-93.  doi: 10.1016/j.ffa.2013.08.005.  Google Scholar

show all references

References:
[1]

T. P. BergerA. CanteautP. Charpin and Y. Laigle-Chapuy, On almost perfect nonlinear functions over $F_{2^n}$, IEEE Trans. Inform. Theory, 52 (2006), 4160-4170.  doi: 10.1109/TIT.2006.880036.  Google Scholar

[2]

E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J. Cryptology, 4 (1991), 3-72.  doi: 10.1007/BF00630563.  Google Scholar

[3]

C. BlondeauA. Canteaut and P. Charpin, Differential properties of power functions, Int. J. Inf. Coding Theory, 1 (2010), 149-170.  doi: 10.1504/IJICOT.2010.032132.  Google Scholar

[4]

C. BlondeauA. Canteaut and P. Charpin, Differential properties of $x \mapsto x^{2^t-1}$, IEEE Trans. Inform. Theory, 57 (2011), 8127-8137.  doi: 10.1109/TIT.2011.2169129.  Google Scholar

[5]

C. Blondeau and L. Perrin, More differentially $6$-uniform power functions, Des. Codes Cryptogr., 73 (2014), 487-505.  doi: 10.1007/s10623-014-9948-2.  Google Scholar

[6]

A. Canteaut and M. Videau, Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis, Advances in Cryptology - EUROCRYPT, Lecture Notes in Comput. Sci., Springer, Berlin, 2332 (2002), 518-533.  doi: 10.1007/3-540-46035-7_34.  Google Scholar

[7]

C. CarletP. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr., 15 (1998), 125-156.  doi: 10.1023/A:1008344232130.  Google Scholar

[8]

C. Carlet and C. S. Ding, Highly nonlinear mappings, J. Complexity, 20 (2004), 205-244.  doi: 10.1016/j.jco.2003.08.008.  Google Scholar

[9]

C. CarletC. S. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inform. Theory, 51 (2005), 2089-2102.  doi: 10.1109/TIT.2005.847722.  Google Scholar

[10]

S.-T. ChoiS. HongJ.-S. No and H. Chung, Differential spectrum of some power functions in odd prime characteristic, Finite Fields Appl., 21 (2013), 11-29.  doi: 10.1016/j.ffa.2013.01.002.  Google Scholar

[11]

R. S. Coulter and R. W. Matthews, Planar functions and planes of Lenz-Barlotti class II, Des. Codes Cryptogr., 10 (1997), 167-184.  doi: 10.1023/A:1008292303803.  Google Scholar

[12]

N. T. Courtois and J. Pieprzyk, Cryptanalysis of block ciphers with overdefined systems of equations, Advances in Cryptology - ASIACRYPT, Lecture Notes in Comput. Sci., Springer, Berlin, 2501 (2002), 267-287.  doi: 10.1007/3-540-36178-2_17.  Google Scholar

[13]

C. S. DingM. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606-2610.  doi: 10.1109/TIT.2007.899545.  Google Scholar

[14]

C. S. Ding and J. Yuan, A family of skew Hadamard difference sets, J. Comb. Theory, Ser. A, 113 (2006), 1526-1535.  doi: 10.1016/j.jcta.2005.10.006.  Google Scholar

[15]

H. DobbertinD. MillsE. N. Muller and A. P. Willems, APN functions in odd characteristic, Discrete Math., 267 (2003), 95-112.  doi: 10.1016/S0012-365X(02)00606-4.  Google Scholar

[16]

H. Dobbertin, Almost perfect nonlinear power functions on $GF(2^n)$: The Welch case, IEEE Trans. Inform. Theory, 45 (1999), 1271-1275.  doi: 10.1109/18.761283.  Google Scholar

[17]

Y. EdelG. Kyureghyan and A. Pott, A new APN functions which is not equivalent to a power mapping, IEEE Trans. Inform. Theory, 52 (2006), 744-747.  doi: 10.1109/TIT.2005.862128.  Google Scholar

[18]

T. HellesethC. M. Rong and D. Sandberg, New families of almost perfect nonlinear power mapping, IEEE Trans. Inform. Theory, 45 (1999), 475-485.  doi: 10.1109/18.748997.  Google Scholar

[19]

T. Helleseth and D. Sandberg, Some power mappings with low differential uniformity, Appl. Algebra Engrg. Comm. Comput., 8 (1997), 363-370.  doi: 10.1007/s002000050073.  Google Scholar

[20]

T. Helleseth, Some results about the cross-correlation function between two maximal linear sequences, Discrete Math., 16 (1976), 209-232.  doi: 10.1016/0012-365X(76)90100-X.  Google Scholar

[21]

T. Jakobsen and L. R. Knudsen, The interpolation attack on block ciphers, Fast Software Encryption - FSE, Lecture Notes in Comput. Sci., Springer, Berlin, 1267 (1997), 28-40.  doi: 10.1007/BFb0052332.  Google Scholar

[22]

P. V. Kumar and O. Moreno, Prime-phase sequences with periodic correlation properties better than binary sequences, IEEE Trans. Inform. Theory, 37 (1991), 603-616.  doi: 10.1109/18.79916.  Google Scholar

[23] R. Lidl and H. Niederreiter, Finite Fields, Second edition, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.   Google Scholar
[24]

S. X. MaH. L. ZhangW. D. Jin and X. H. Niu, A new family of optimal ternary cyclic codes, IEICE Trans. Fund., E97 (2014), 690-693.  doi: 10.1587/transfun.E97.A.690.  Google Scholar

[25]

G. J. Ness and T. Helleseth, A new family of ternary almost perfect nonlinear mappings, IEEE Trans. Inform. Theory, 53 (2007), 2581-2586.  doi: 10.1109/TIT.2007.899508.  Google Scholar

[26]

A. Pott, Almost perfect and planar functions, Des. Codes Cryptogr., 78 (2016), 141-195.  doi: 10.1007/s10623-015-0151-x.  Google Scholar

[27]

H. Trachtenberg, On the Cross-Correlation Functions of Maximal Linear Sequences, Ph. D. thesis, University of Southern California, 1970. Google Scholar

[28]

M. S. Xiong and H. D. Yan, A note on the differential spectrum of a differentially 4-uniform power function, Finite Fields Appl., 48 (2017), 117-125.  doi: 10.1016/j.ffa.2017.07.008.  Google Scholar

[29]

M. S. XiongH. D. Yan and P. Z. Yuan, On a conjecture of differentially 8-uniform power functions, Des. Codes Cryptogr., 86 (2018), 1601-1621.  doi: 10.1007/s10623-017-0416-7.  Google Scholar

[30]

G. K. XuX. W. Cao and S. D. Xu, Several classes of polynomials with low differential uniformity over finite fields of odd characteristic, Appl. Algebra Engrg. Comm. Comput., 27 (2016), 91-103.  doi: 10.1007/s00200-015-0272-5.  Google Scholar

[31]

H. D. Yan and D. C. Han, A class of 3-uniform ternary power function and related codes, IEICE Trans. Fund., E102-A (2019), 849-853.   Google Scholar

[32]

H. D. YanZ. C. ZhouJ. WengJ. M. WenT. Helleseth and Q. Wang, Differencial spectrum of Kasami power permutation over odd characteristic finite fields, IEEE Trans. Inform. Theory, 65 (2019), 6819-6826.  doi: 10.1109/TIT.2019.2910070.  Google Scholar

[33]

X. Y. ZengL. HuW. F. JiangQ. Yue and X. W. Cao, The weight distribution of a class of $p$-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.  doi: 10.1016/j.ffa.2009.12.001.  Google Scholar

[34]

Z. B. Zha and X. L. Wang, Almost perfect nonlinear power functions in odd characteristic, IEEE Trans. Inform. Theory, 57 (2011), 4826-4832.  doi: 10.1109/TIT.2011.2145130.  Google Scholar

[35]

Z. B. Zha and X. L. Wang, Power functions with low uniformity on odd characteristic finite fields, Sci. China Math., 53 (2010), 1931-1940.  doi: 10.1007/s11425-010-3149-x.  Google Scholar

[36]

Z. C. Zhou and C. S. Ding, A class of three-weight codes, Finite Fields Appl., 25 (2014), 79-93.  doi: 10.1016/j.ffa.2013.08.005.  Google Scholar

Table 1.  Some power functions $ \Pi(x) = x^d $ over $ \mathbb{F}_{p^n} $ with known differential spectrum
$ p $ $ d $ condition $ \Delta(\Pi) $ references
2 $ 2^s+1 $ $ \gcd(s,n)=2 $ 4 [3]
2 $ 2^{2s}-2^s+1 $ $ \gcd(s,n)=2 $ 4 [3]
2 $ 2^n-2 $ $ n $ even 4 [3]
2 $ 2^{2k}+2^k+1 $ $ n=4k $, $ k $ odd 4 [3]
2 $ 2^{2k}+2^k+1 $ $ n=4k $ 4 [28]
2 $ 2^t-1 $ $ t=3,n-2 $ 6 [4]
2 $ 2^t-1 $ $ t=(n-1)/2 $,$ (n+3)/2 $, $ n $ odd $ 6 $ or $ 8 $ [5]
2 $ 2^m+2^{(m+1)/2}+1 $ $ n=2m $, $ m\geq5 $ odd $ 8 $ [29]
2 $ 2^{m+1}+3 $ $ n=2m $, $ m\geq5 $ odd $ 8 $ [29]
3 $ (3^m-3)/4 $ $ n $ odd $ \leq 3 $ [31]
odd $ (p^k+1)/2 $ $ e=\gcd(n,k) $ $ (p^e-1)/2 $or $ p^e+1 $} [10]
odd $ (p^n+1)/(p^m+1) $$ +(p^n-1)/2 $} $ p \equiv 3 \; (\mathrm{mod}\; 4) $,$ n $ odd, $ m|n $} $ (p^m+1)/2 $ [10]
odd $ p^{2k}-p^k+1 $ $ n $ odd, $ \gcd(n,k)=1 $ $ p+1 $ [32]
odd $ p^{2k}-p^k+1 $ $ \gcd(n,k)=e $, $ \frac{n}{e} $ odd $ p^e+1 $ This paper
$ p $ $ d $ condition $ \Delta(\Pi) $ references
2 $ 2^s+1 $ $ \gcd(s,n)=2 $ 4 [3]
2 $ 2^{2s}-2^s+1 $ $ \gcd(s,n)=2 $ 4 [3]
2 $ 2^n-2 $ $ n $ even 4 [3]
2 $ 2^{2k}+2^k+1 $ $ n=4k $, $ k $ odd 4 [3]
2 $ 2^{2k}+2^k+1 $ $ n=4k $ 4 [28]
2 $ 2^t-1 $ $ t=3,n-2 $ 6 [4]
2 $ 2^t-1 $ $ t=(n-1)/2 $,$ (n+3)/2 $, $ n $ odd $ 6 $ or $ 8 $ [5]
2 $ 2^m+2^{(m+1)/2}+1 $ $ n=2m $, $ m\geq5 $ odd $ 8 $ [29]
2 $ 2^{m+1}+3 $ $ n=2m $, $ m\geq5 $ odd $ 8 $ [29]
3 $ (3^m-3)/4 $ $ n $ odd $ \leq 3 $ [31]
odd $ (p^k+1)/2 $ $ e=\gcd(n,k) $ $ (p^e-1)/2 $or $ p^e+1 $} [10]
odd $ (p^n+1)/(p^m+1) $$ +(p^n-1)/2 $} $ p \equiv 3 \; (\mathrm{mod}\; 4) $,$ n $ odd, $ m|n $} $ (p^m+1)/2 $ [10]
odd $ p^{2k}-p^k+1 $ $ n $ odd, $ \gcd(n,k)=1 $ $ p+1 $ [32]
odd $ p^{2k}-p^k+1 $ $ \gcd(n,k)=e $, $ \frac{n}{e} $ odd $ p^e+1 $ This paper
Table 2.  Differential spectrum of some $ \Pi(x) = x^{p^{2k}-p^k+1} $ over $ \mathbb F_{p^n} $
$ p $ $ n $ $ k $ $ e $ $ \Pi(x) $ $ \mathcal{S}=\omega_0,\omega_{p^e-1},\omega_{p^e},\omega_{p^e+1} $
3 $ 5 $ $ 2 $ $ 1 $ $ x^{73} $ $ \left\{ {{\rm{152,60,1,30}}} \right\}$
$ 3 $ $ 6 $ $ 2 $ $ 2 $ $ x^{73} $ $ \left\{ {{\rm{647,45,1,36}}} \right\} $
$ 3 $ $ 9 $ $ 3 $ $ 3 $ $ x^{703} $ $\left\{ {{\rm{18953,378,1,351}}} \right\}$
$ 3 $ $ 9 $ $ 6 $ $ 3 $ $ x^{530713} $ $\left\{ {{\rm{18953,378,1,351}}} \right\}$
$ 5 $ $ 6 $ $ 2 $ $ 2 $ $ x^{601} $ $\left\{ {{\rm{14999,325,1,300}}} \right\}$
$ p $ $ n $ $ k $ $ e $ $ \Pi(x) $ $ \mathcal{S}=\omega_0,\omega_{p^e-1},\omega_{p^e},\omega_{p^e+1} $
3 $ 5 $ $ 2 $ $ 1 $ $ x^{73} $ $ \left\{ {{\rm{152,60,1,30}}} \right\}$
$ 3 $ $ 6 $ $ 2 $ $ 2 $ $ x^{73} $ $ \left\{ {{\rm{647,45,1,36}}} \right\} $
$ 3 $ $ 9 $ $ 3 $ $ 3 $ $ x^{703} $ $\left\{ {{\rm{18953,378,1,351}}} \right\}$
$ 3 $ $ 9 $ $ 6 $ $ 3 $ $ x^{530713} $ $\left\{ {{\rm{18953,378,1,351}}} \right\}$
$ 5 $ $ 6 $ $ 2 $ $ 2 $ $ x^{601} $ $\left\{ {{\rm{14999,325,1,300}}} \right\}$
[1]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[2]

Chloé Jimenez. A zero sum differential game with correlated informations on the initial position. A case with a continuum of initial positions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021009

[3]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[4]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[5]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[6]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[7]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[8]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[9]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[10]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[11]

Krzysztof Stempak. Spectral properties of ordinary differential operators admitting special decompositions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021054

[12]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[13]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[14]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[15]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[16]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[17]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[18]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[19]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021019

[20]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (103)
  • HTML views (491)
  • Cited by (1)

Other articles
by authors

[Back to Top]