doi: 10.3934/amc.2020081

Internal state recovery of Espresso stream cipher using conditional sampling resistance and TMDTO attack

Bosch India (RBEI/ESY), Bangalore, India

Received  November 2019 Revised  January 2020 Published  April 2020

Espresso is a stream cipher proposed for the 5G wireless communication system. Since the design of this cipher is based on the Galois configuration of NLFSR, the cipher has a short propagation delay, and it is the fastest among the ciphers below 1500 GE, including Grain-128 and Trivium. The time-memory-data tradeoff (TMDTO) attack on this cipher and finding the conditional BSW sampling resistance are difficult due to its Galois configuration. This paper demonstrates the calculation of conditional BSW-sampling resistance of Espresso stream cipher, which is based on Galois configuration, and also mounts the TMDTO attack on the cipher by employing the calculated sampling resistance. It is also shown that the attack complexities of TMDTO attack are lower than those claimed by the designers of the ciphers.

Citation: Nishant Sinha. Internal state recovery of Espresso stream cipher using conditional sampling resistance and TMDTO attack. Advances in Mathematics of Communications, doi: 10.3934/amc.2020081
References:
[1]

S. Babbage, A space/time tradeoff in exhaustive search attacks on stream ciphers, European Convention on Security and Detection, 408 (1995). Google Scholar

[2]

A. Biryukov and A. Shamir, Cryptanalytic time/memory/data tradeoffs for stream ciphers, ASIACRYPT 2000, Lecture Notes in Computer Science, 1976 (2000), 1-13.  doi: 10.1007/3-540-44448-3_1.  Google Scholar

[3]

A. BiryukovA. Shamir and D. Wagner, Real time cryptanalysis of A5/1 on a PC, Fast Software Encryption 2000, Lecture Notes in Computer Science, 1978 (2001), 37-44.  doi: 10.1007/3-540-44706-7_1.  Google Scholar

[4]

T. E. Bjørstad, Cryptanalysis of grain using time/memory/data tradeoffs, (2008). Available from: http://www.ecrypt.eu.org/stream/grainp3.html. Google Scholar

[5]

C. Cannière and B. Preneel, Trivium, new stream cipher designs: The eSTREAM finalists, Lecture Notes in Computer Science, 4986 (2008), 244-266.   Google Scholar

[6]

E. Dubrova, A transformation from the Fibonacci to the Galois NLFSRs, IEEE Transactions on Information Theory, 55 (2009), 5263-5271.  doi: 10.1109/TIT.2009.2030467.  Google Scholar

[7]

E. Dubrova and M. Hell, A stream cipher for 5G wireless communications systems, Cryptography and Communications, 9 (2017), 273-289.  doi: 10.1007/s12095-015-0173-2.  Google Scholar

[8]

J. Golić, Cryptanalysis of alleged $A5$ stream cipher, EUROCRYPT 1997, Lecture Notes in Computer Science, 1233 (1997), 239-255.   Google Scholar

[9]

M. HellT. JohanssonA. Maximov and W. Meier, The Grain family of stream ciphers, new stream cipher designs: The eSTREAM finalists, Lecture Notes in Computer Science, 4986 (2008), 17-190.   Google Scholar

[10]

M. E. Hellman, A cryptanalytic time-memory trade-off, IEEE Transactions on Information Theory, 26 (1980), 401-406.  doi: 10.1109/TIT.1980.1056220.  Google Scholar

[11]

J. Hong and P. Sarkar, New applications of time memory data tradeoffs, ASIACRYPT 2005, Lecture Notes in Computer Science, Springer, Berlin, 3788 (2005), 353-372.  doi: 10.1007/11593447_19.  Google Scholar

[12]

S. MaitraN. SinhaA. SiddhantiR. Anand and S. Gangopadhyay, A TMDTO attack against Lizard, IEEE Transactions on Computers, 67 (2018), 733-739.  doi: 10.1109/TC.2017.2773062.  Google Scholar

[13]

M. J. MihaljevićS. GangopadhyayG. Paul and H. Imai, Internal state recovery of Grain-v1 employing normality order of the filter function, IET Information Security, 6 (2012), 55-64.   Google Scholar

[14]

M. J. MihaljevićS. GangopadhyayG. Paul and H. Imai, Generic cryptographic weakness of k-normal Boolean functions in certain stream ciphers and cryptanalysis of Grain-128, Periodica Mathematica Hungarica, 65 (2012), 205-227.  doi: 10.1007/s10998-012-4631-8.  Google Scholar

show all references

References:
[1]

S. Babbage, A space/time tradeoff in exhaustive search attacks on stream ciphers, European Convention on Security and Detection, 408 (1995). Google Scholar

[2]

A. Biryukov and A. Shamir, Cryptanalytic time/memory/data tradeoffs for stream ciphers, ASIACRYPT 2000, Lecture Notes in Computer Science, 1976 (2000), 1-13.  doi: 10.1007/3-540-44448-3_1.  Google Scholar

[3]

A. BiryukovA. Shamir and D. Wagner, Real time cryptanalysis of A5/1 on a PC, Fast Software Encryption 2000, Lecture Notes in Computer Science, 1978 (2001), 37-44.  doi: 10.1007/3-540-44706-7_1.  Google Scholar

[4]

T. E. Bjørstad, Cryptanalysis of grain using time/memory/data tradeoffs, (2008). Available from: http://www.ecrypt.eu.org/stream/grainp3.html. Google Scholar

[5]

C. Cannière and B. Preneel, Trivium, new stream cipher designs: The eSTREAM finalists, Lecture Notes in Computer Science, 4986 (2008), 244-266.   Google Scholar

[6]

E. Dubrova, A transformation from the Fibonacci to the Galois NLFSRs, IEEE Transactions on Information Theory, 55 (2009), 5263-5271.  doi: 10.1109/TIT.2009.2030467.  Google Scholar

[7]

E. Dubrova and M. Hell, A stream cipher for 5G wireless communications systems, Cryptography and Communications, 9 (2017), 273-289.  doi: 10.1007/s12095-015-0173-2.  Google Scholar

[8]

J. Golić, Cryptanalysis of alleged $A5$ stream cipher, EUROCRYPT 1997, Lecture Notes in Computer Science, 1233 (1997), 239-255.   Google Scholar

[9]

M. HellT. JohanssonA. Maximov and W. Meier, The Grain family of stream ciphers, new stream cipher designs: The eSTREAM finalists, Lecture Notes in Computer Science, 4986 (2008), 17-190.   Google Scholar

[10]

M. E. Hellman, A cryptanalytic time-memory trade-off, IEEE Transactions on Information Theory, 26 (1980), 401-406.  doi: 10.1109/TIT.1980.1056220.  Google Scholar

[11]

J. Hong and P. Sarkar, New applications of time memory data tradeoffs, ASIACRYPT 2005, Lecture Notes in Computer Science, Springer, Berlin, 3788 (2005), 353-372.  doi: 10.1007/11593447_19.  Google Scholar

[12]

S. MaitraN. SinhaA. SiddhantiR. Anand and S. Gangopadhyay, A TMDTO attack against Lizard, IEEE Transactions on Computers, 67 (2018), 733-739.  doi: 10.1109/TC.2017.2773062.  Google Scholar

[13]

M. J. MihaljevićS. GangopadhyayG. Paul and H. Imai, Internal state recovery of Grain-v1 employing normality order of the filter function, IET Information Security, 6 (2012), 55-64.   Google Scholar

[14]

M. J. MihaljevićS. GangopadhyayG. Paul and H. Imai, Generic cryptographic weakness of k-normal Boolean functions in certain stream ciphers and cryptanalysis of Grain-128, Periodica Mathematica Hungarica, 65 (2012), 205-227.  doi: 10.1007/s10998-012-4631-8.  Google Scholar

Table 1.  State Bits required to calculate feedback bits
Row Feedback bit calculaton because of (5) Column 0 Feedback bit calculaton because of (6) Column 1 Feedback bit calculaton because of (7) Column 2 Feedback bit calculaton because of (8) Column 3 Feedback bit calculaton because of (9) Column 4
Feedback bits State bits appeared on RHS of (5) Feedback bits State bits appeared on RHS of (6) Feedback bits State bits appeared on RHS of (7) Feedback bits State bits appeared on RHS of (8) Feedback bits State bits appeared on RHS of (2)
0 $ x_{256}^0 $ $ x_{0}, \underline{x_{41}}, \overline{x_{70}} $ $ x_{252}^1 $ $ x_{252}, x_{42}, $ $ x_{83}, x_{8} $ $ x_{248}^2 $ $ x_{248}, x_{44}, $ $ x_{102}, x_{40} $ $ x_{244}^3 $ $ x_{244}, x_{43}, $ $ x_{118}, x_{103} $ $ x_{240}^4 $ $ x_{240}, \overline{x_{46}}, $ $ \underline{x_{141}}, x_{117} $
1 $ x_{257}^0 $ $ x_{1}, \underline{x_{42}}, \overline{x_{71}} $ $ x_{253}^1 $ $ x_{253}, x_{43}, $ $ x_{84}, x_{9} $ $ x_{249}^2 $ $ x_{249}, x_{45}, $ $ x_{103}, x_{41} $ $ x_{245}^3 $ $ x_{245}, x_{44}, $ $ x_{119}, x_{104} $ $ x_{241}^4 $ $ x_{241}, \overline{x_{47}}, $ $ \underline{x_{142}}, x_{118} $
2 $ x_{258}^0 $ $ x_{2}, \underline{x_{43}}, \overline{x_{72}} $ $ x_{254}^1 $ $ x_{254}, x_{44}, $ $ x_{85}, x_{10} $ $ x_{250}^2 $ $ x_{250}, \overline{x_{46}}, $ $ \underline{x_{104}}, x_{42} $ $ x_{246}^3 $ $ x_{246}, x_{45}, $ $ x_{120}, x_{105} $ $ x_{242}^4 $ $ x_{242}, \overline{x_{48}}, $ $ \underline{x_{143}}, x_{119} $
3 $ x_{259}^0 $ $ x_{3}, \underline{x_{44}}, \overline{x_{73}} $ $ x_{255}^1 $ $ x_{255}, x_{45}, $ $ x_{86}, x_{11} $ $ x_{251}^2 $ $ x_{251}, \overline{x_{47}}, $ $ \underline{x_{105}}, x_{43} $ $ x_{247}^3 $ $ x_{247}, \overline{x_{46}}, $ $ \underline{x_{121}}, x_{106} $ $ x_{243}^4 $ $ x_{243}, \overline{x_{49}}, $ $ \underline{x_{144}}, x_{120} $
4 $ x_{260}^0 $ $ x_{4}, \underline{x_{45}}, \overline{x_{74}} $ $ x_{256}^1 $ $ x_{256}^0, \overline{x_{46}}, $ $ \underline{x_{87}}, x_{12} $ $ x_{252}^2 $ $ x_{252}^1, \overline{x_{48}}, $ $ \underline{x_{106}}, x_{44} $ $ x_{248}^3 $ $ x_{248}^2, \overline{x_{47}}, $ $ \underline{x_{122}}, x_{107} $ $ x_{244}^4 $ $ x_{244}^3, \overline{x_{50}}, $ $ \underline{x_{145}}, x_{121} $
5 $ x_{261}^0 $ $ x_{5}, \overline{x_{46}}, \overline{x_{75}} $ $ x_{257}^1 $ $ x_{257}^0, \overline{x_{47}}, $ $ \underline{x_{88}}, x_{13} $ $ x_{253}^2 $ $ x_{253}^1, \overline{x_{49}}, $ $ \underline{x_{107}}, x_{45} $ $ x_{249}^3 $ $ x_{249}^2, \overline{x_{48}}, $ $ \underline{x_{123}}, x_{108} $ $ x_{245}^4 $ $ x_{245}^3, \overline{x_{51}}, $ $ \underline{x_{146}}, x_{122} $
6 $ x_{262}^0 $ $ x_{6}, \overline{x_{47}}, \overline{x_{76}} $ $ x_{258}^1 $ $ x_{258}^0, \overline{x_{48}}, $ $ \underline{x_{89}}, x_{14} $ $ x_{254}^2 $ $ x_{254}^1, \overline{x_{50}}, $ $ \underline{x_{108}}, \overline{x_{46}} $ $ x_{250}^3 $ $ x_{250}^2, \overline{x_{49}}, $ $ \underline{x_{124}}, x_{109} $ $ x_{246}^4 $ $ x_{246}^3, \overline{x_{52}}, $ $ \underline{x_{147}}, x_{123} $
7 $ x_{263}^0 $ $ x_{7}, \overline{x_{48}}, \underline{x_{77}} $ $ x_{259}^1 $ $ x_{259}^0, \overline{x_{49}}, $ $ \underline{x_{90}}, x_{15} $ $ x_{255}^2 $ $ x_{255}^1, \overline{x_{51}}, $ $ \underline{x_{109}}, \overline{x_{47}} $ $ x_{251}^3 $ $ x_{251}^2, \overline{x_{50}}, $ $ \underline{x_{125}}, x_{110} $ $ x_{247}^4 $ $ x_{247}^3, \overline{x_{53}}, $ $ \underline{x_{148}}, x_{124} $
8 $ x_{264}^0 $ $ x_{8}, \overline{x_{49}}, \underline{x_{78}} $ $ x_{260}^1 $ $ x_{260}^0, \overline{x_{50}}, $ $ \underline{x_{91}}, x_{16} $ $ x_{256}^2 $ $ x_{256}^1, \overline{x_{52}}, $ $ \underline{x_{110}}, \overline{x_{48}} $ $ x_{252}^3 $ $ x_{252}^2, \overline{x_{51}}, $ $ \underline{x_{126}}, x_{111} $ $ x_{248}^4 $ $ x_{248}^3, \overline{x_{54}}, $ $ \underline{x_{149}}, x_{125} $
9 $ x_{265}^0 $ $ x_{9}, \overline{x_{50}}, \underline{x_{79}} $ $ x_{261}^1 $ $ x_{261}^0, \overline{x_{51}}, $ $ \underline{x_{92}}, x_{17} $ $ x_{257}^2 $ $ x_{257}^1, \overline{x_{53}}, $ $ \underline{x_{111}}, \overline{x_{49}} $ $ x_{253}^3 $ $ x_{253}^2, \overline{x_{52}}, $ $ \underline{x_{127}}, x_{112} $ $ x_{249}^4 $ $ x_{249}^3, \overline{x_{55}}, $ $ \underline{x_{150}}, x_{126} $
10 $ x_{266}^0 $ $ x_{10}, \overline{x_{51}}, \underline{x_{80}} $ $ x_{262}^1 $ $ x_{262}^0, \overline{x_{52}}, $ $ \underline{x_{93}}, x_{18} $ $ x_{258}^2 $ $ x_{258}^1, \overline{x_{54}}, $ $ \underline{x_{112}}, \overline{x_{50}} $ $ x_{254}^3 $ $ x_{254}^2, \overline{x_{53}}, $ $ \underline{x_{128}}, x_{113} $ $ x_{250}^4 $ $ x_{250}^3, \overline{x_{56}}, $ $ \underline{x_{151}}, x_{127} $
11 $ x_{267}^0 $ $ x_{11}, \overline{x_{52}}, \underline{x_{81}} $ $ x_{263}^1 $ $ x_{263}^0, \overline{x_{53}}, $ $ \underline{x_{94}}, x_{19} $ $ x_{259}^2 $ $ x_{259}^1, \overline{x_{55}}, $ $ \underline{x_{113}}, \overline{x_{51}} $ $ x_{255}^3 $ $ x_{255}^2, \overline{x_{54}}, $ $ \underline{x_{129}}, x_{114} $ $ x_{251}^4 $ $ x_{251}^3, \overline{x_{57}}, $ $ \underline{x_{152}}, x_{128} $
12 $ x_{268}^0 $ $ x_{12}, \overline{x_{53}}, \underline{x_{82}} $ $ x_{264}^1 $ $ x_{264}^0, \overline{x_{54}}, $ $ \underline{x_{95}}, x_{20} $ $ x_{260}^2 $ $ x_{260}^1, \overline{x_{56}}, $ $ \underline{x_{114}}, \overline{x_{52}} $ $ x_{256}^3 $ $ x_{256}^2, \overline{x_{55}}, $ $ \underline{x_{130}}, x_{115} $ $ x_{252}^4 $ $ x_{252}^3, \overline{x_{58}}, $ $ \underline{x_{153}}, x_{129} $
13 $ x_{269}^0 $ $ x_{13}, \overline{x_{54}}, \underline{x_{83}} $ $ x_{265}^1 $ $ x_{265}^0, \overline{x_{55}}, $ $ \underline{x_{96}}, x_{21} $ $ x_{261}^2 $ $ x_{261}^1, \overline{x_{57}}, $ $ \underline{x_{115}}, \overline{x_{53}} $ $ x_{257}^3 $ $ x_{257}^2, \overline{x_{56}}, $ $ \underline{x_{131}}, x_{116} $ $ x_{253}^4 $ $ x_{253}^3, \overline{x_{59}}, $ $ \underline{x_{154}}, x_{130} $
14 $ x_{270}^0 $ $ x_{14}, \overline{x_{55}}, \underline{x_{84}} $ $ x_{266}^1 $ $ x_{266}^0, \overline{x_{56}}, $ $ \underline{x_{97}}, x_{22} $ $ x_{262}^2 $ $ x_{262}^1, \overline{x_{58}}, $ $ \underline{x_{116}}, \overline{x_{54}} $ $ x_{258}^3 $ $ x_{258}^2, \overline{x_{57}}, $ $ \underline{x_{132}}, x_{117} $ $ x_{254}^4 $ $ x_{254}^3, \overline{x_{60}}, $ $ \underline{x_{155}}, x_{131} $
15 $ x_{271}^0 $ $ x_{15}, \overline{x_{56}}, \underline{x_{85}} $ $ x_{267}^1 $ $ x_{267}^0, \overline{x_{57}}, $ $ \underline{x_{98}}, x_{23} $ $ x_{263}^2 $ $ x_{263}^1, \overline{x_{59}}, $ $ \underline{x_{117}}, \overline{x_{55}} $ $ x_{259}^3 $ $ x_{259}^2, \overline{x_{58}}, $ $ \underline{x_{133}}, x_{118} $ $ x_{255}^4 $ $ x_{255}^3, \overline{x_{61}}, $ $ \underline{x_{156}}, x_{132} $
16 $ x_{272}^0 $ $ x_{16}, \overline{x_{57}}, \underline{x_{86}} $ $ x_{268}^1 $ $ x_{268}^0, \overline{x_{58}}, $ $ \underline{x_{99}}, x_{24} $ $ x_{264}^2 $ $ x_{264}^1, \overline{x_{60}}, $ $ \underline{x_{118}}, \overline{x_{56}} $ $ x_{260}^3 $ $ x_{260}^2, \overline{x_{59}}, $ $ \underline{x_{134}}, x_{119} $ $ x_{256}^4 $ $ x_{256}^3, \overline{x_{62}}, $ $ \underline{x_{157}}, x_{133} $
17 $ x_{273}^0 $ $ x_{17}, \overline{x_{58}}, \underline{x_{87}} $ $ x_{269}^1 $ $ x_{269}^0, \overline{x_{59}}, $ $ \underline{x_{100}}, x_{25} $ $ x_{265}^2 $ $ x_{265}^1, \overline{x_{61}}, $ $ \underline{x_{119}}, \overline{x_{57}} $ $ x_{261}^3 $ $ x_{261}^2, \overline{x_{60}}, $ $ \underline{x_{135}}, x_{120} $ $ x_{257}^4 $ $ x_{257}^3, \overline{x_{63}}, $ $ \underline{x_{158}}, x_{134} $
18 $ x_{274}^0 $ $ x_{18}, \overline{x_{59}}, \underline{x_{88}} $ $ x_{270}^1 $ $ x_{270}^0, \overline{x_{60}}, $ $ \underline{x_{101}}, x_{26} $ $ x_{266}^2 $ $ x_{266}^1, \overline{x_{62}}, $ $ \underline{x_{120}}, \overline{x_{58}} $ $ x_{262}^3 $ $ x_{262}^2, \overline{x_{61}}, $ $ \underline{x_{136}}, x_{121} $ $ x_{258}^4 $ $ x_{258}^3, \overline{x_{64}}, $ $ \underline{x_{159}}, x_{135} $
19 $ x_{275}^0 $ $ x_{19}, \overline{x_{60}}, \underline{x_{89}} $ $ x_{271}^1 $ $ x_{271}^0, \overline{x_{61}}, $ $ \underline{x_{102}}, x_{27} $ $ x_{267}^2 $ $ x_{267}^1, \overline{x_{63}}, $ $ \underline{x_{121}}, \overline{x_{59}} $ $ x_{263}^3 $ $ x_{263}^2, \overline{x_{62}}, $ $ \underline{x_{137}}, x_{122} $ $ x_{259}^4 $ $ x_{259}^3, \overline{x_{65}}, $ $ \underline{x_{160}}, x_{136} $
20 $ x_{276}^0 $ $ x_{20}, \overline{x_{61}}, \underline{x_{90}} $ $ x_{272}^1 $ $ x_{272}^0, \overline{x_{62}}, $ $ \underline{x_{103}}, x_{28} $ $ x_{268}^2 $ $ x_{268}^1, \overline{x_{64}}, $ $ \underline{x_{122}}, \overline{x_{60}} $ $ x_{264}^3 $ $ x_{264}^2, \overline{x_{63}}, $ $ \underline{x_{138}}, x_{123} $ $ x_{260}^4 $ $ x_{260}^3, \overline{x_{66}}, $ $ \underline{x_{161}}, x_{137} $
21 $ x_{277}^0 $ $ x_{21}, \overline{x_{62}}, \underline{x_{91}} $ $ x_{273}^1 $ $ x_{273}^0, \overline{x_{63}}, $ $ \underline{x_{104}}, x_{29} $ $ x_{269}^2 $ $ x_{269}^1, \overline{x_{65}}, $ $ \underline{x_{123}}, \overline{x_{61}} $ $ x_{265}^3 $ $ x_{265}^2, \overline{x_{64}}, $ $ \underline{x_{139}}, x_{124} $ $ x_{261}^4 $ $ x_{261}^3, \overline{x_{67}}, $ $ \underline{x_{162}}, x_{138} $
22 $ x_{278}^0 $ $ x_{22}, \overline{x_{63}}, \underline{x_{92}} $ $ x_{274}^1 $ $ x_{274}^0, \overline{x_{64}}, $ $ \underline{x_{105}}, x_{30} $ $ x_{270}^2 $ $ x_{270}^1, \overline{x_{66}}, $ $ \underline{x_{124}}, \overline{x_{62}} $ $ x_{266}^3 $ $ x_{266}^2, \overline{x_{65}}, $ $ \underline{x_{140}}, x_{125} $ $ x_{262}^4 $ $ x_{262}^3, \overline{x_{68}}, $ $ \underline{x_{163}}, x_{139} $
23 $ x_{279}^0 $ $ x_{23}, \overline{x_{64}}, \underline{x_{93}} $ $ x_{275}^1 $ $ x_{275}^0, \overline{x_{65}}, $ $ \underline{x_{106}}, x_{31} $ $ x_{271}^2 $ $ x_{271}^1, \overline{x_{67}}, $ $ \underline{x_{125}}, \overline{x_{63}} $ $ x_{267}^3 $ $ x_{267}^2, \overline{x_{66}}, $ $ \underline{x_{141}}, x_{126} $ $ x_{263}^4 $ $ x_{263}^3, \overline{x_{69}}, $ $ \underline{x_{164}}, x_{140} $
24 $ x_{280}^0 $ $ x_{24}, \overline{x_{65}}, \underline{x_{94}} $ $ x_{276}^1 $ $ x_{276}^0, \overline{x_{66}}, $ $ \underline{x_{107}}, x_{32} $ $ x_{272}^2 $ $ x_{272}^1, \overline{x_{68}}, $ $ \underline{x_{126}}, \overline{x_{64}} $ $ x_{268}^3 $ $ x_{268}^2, \overline{x_{67}}, $ $ \underline{x_{142}}, x_{127} $ $ x_{264}^4 $ $ x_{264}^3, \overline{x_{70}}, $ $ \underline{x_{165}}, x_{141} $
25 $ x_{281}^0 $ $ x_{25}, \overline{x_{66}}, \underline{x_{95}} $ $ x_{277}^1 $ $ x_{277}^0, \overline{x_{67}}, $ $ \underline{x_{108}}, x_{33} $ $ x_{273}^2 $ $ x_{273}^1, \overline{x_{69}}, $ $ \underline{x_{127}}, \overline{x_{65}} $ $ x_{269}^3 $ $ x_{269}^2, \overline{x_{68}}, $ $ \underline{x_{143}}, x_{128} $ $ x_{265}^4 $ $ x_{265}^3, \overline{x_{71}}, $ $ \underline{x_{166}}, x_{142} $
26 $ x_{282}^0 $ $ x_{26}, \overline{x_{67}}, \underline{x_{96}} $ $ x_{278}^1 $ $ x_{278}^0, \overline{x_{68}}, $ $ \underline{x_{109}}, x_{34} $ $ x_{274}^2 $ $ x_{274}^1, \overline{x_{70}}, $ $ \underline{x_{128}}, \overline{x_{66}} $ $ x_{270}^3 $ $ x_{270}^2, \overline{x_{69}}, $ $ \underline{x_{144}}, x_{129} $ $ x_{266}^4 $ $ x_{266}^3, \overline{x_{72}}, $ $ \underline{x_{167}}, x_{143} $
27 $ x_{283}^0 $ $ x_{27}, \overline{x_{68}}, \underline{x_{97}} $ $ x_{279}^1 $ $ x_{279}^0, \overline{x_{69}}, $ $ \underline{x_{110}}, x_{35} $ $ x_{275}^2 $ $ x_{275}^1, \overline{x_{71}}, $ $ \underline{x_{129}}, \overline{x_{67}} $ $ x_{271}^3 $ $ x_{271}^2, \overline{x_{70}}, $ $ \underline{x_{145}}, x_{130} $ $ x_{267}^4 $ $ x_{267}^3, \overline{x_{73}}, $ $ \underline{x_{168}}, x_{144} $
28 $ x_{284}^0 $ $ x_{28}, \overline{x_{69}}, \underline{x_{98}} $ $ x_{280}^1 $ $ x_{280}^0, \overline{x_{70}}, $ $ \underline{x_{111}}, x_{36} $ $ x_{276}^2 $ $ x_{276}^1, \overline{x_{72}}, $ $ \underline{x_{130}}, \overline{x_{68}} $ $ x_{272}^3 $ $ x_{272}^2, \overline{x_{71}}, $ $ \underline{x_{146}}, x_{131} $ $ x_{268}^4 $ $ x_{268}^3, \overline{x_{74}}, $ $ \underline{x_{169}}, x_{145} $
29 $ x_{285}^0 $ $ x_{29}, \overline{x_{70}}, \underline{x_{99}} $ $ x_{281}^1 $ $ x_{281}^0, \overline{x_{71}}, $ $ \underline{x_{112}}, x_{37} $ $ x_{277}^2 $ $ x_{277}^1, \overline{x_{73}}, $ $ \underline{x_{131}}, \overline{x_{69}} $ $ x_{273}^3 $ $ x_{273}^2, \overline{x_{72}}, $ $ \underline{x_{147}}, x_{132} $ $ x_{269}^4 $ $ x_{269}^3, \overline{x_{75}}, $ $ \underline{x_{170}}, x_{146} $
30 $ x_{286}^0 $ $ x_{30}, \overline{x_{71}}, \underline{x_{100}} $ $ x_{282}^1 $ $ x_{282}^0, \overline{x_{72}}, $ $ \underline{x_{113}}, x_{38} $ $ x_{278}^2 $ $ x_{278}^1, \overline{x_{74}}, $ $ \underline{x_{132}}, \overline{x_{70}} $ $ x_{274}^3 $ $ x_{274}^2, \overline{x_{73}}, $ $ \underline{x_{148}}, x_{133} $ $ x_{270}^4 $ $ x_{270}^3, \overline{x_{76}}, $ $ \underline{x_{171}}, x_{147} $
31 $ x_{287}^0 $ $ x_{31}, \overline{x_{72}}, \underline{x_{101}} $ $ x_{283}^1 $ $ x_{283}^0, \overline{x_{73}}, $ $ \underline{x_{114}}, x_{39} $ $ x_{279}^2 $ $ x_{279}^1, \overline{x_{75}}, $ $ \underline{x_{133}}, \overline{x_{71}} $ $ x_{275}^3 $ $ x_{275}^2, \overline{x_{74}}, $ $ \underline{x_{149}}, x_{134} $ $ x_{271}^4 $ $ x_{271}^3, x_{77}, $ $ x_{172}, x_{148} $
32 $ x_{288}^0 $ $ x_{32}, \overline{x_{73}}, \underline{x_{102}} $ $ x_{284}^1 $ $ x_{284}^0, \overline{x_{74}}, $ $ \underline{x_{115}}, x_{40} $ $ x_{280}^2 $ $ x_{280}^1, \overline{x_{76}}, $ $ \underline{x_{134}}, \overline{x_{72}} $ $ x_{276}^3 $ $ x_{276}^2, \overline{x_{75}}, $ $ \underline{x_{150}}, x_{135} $ $ x_{272}^4 $ $ x_{272}^3, x_{78}, $ $ x_{173}, x_{149} $
33 $ x_{289}^0 $ $ x_{33}, \overline{x_{74}}, \underline{x_{103}} $ $ x_{285}^1 $ $ x_{285}^0, \overline{x_{75}}, $ $ \underline{x_{116}}, x_{41} $ $ x_{281}^2 $ $ x_{281}^1, x_{77}, $ $ x_{135}, \overline{x_{73}} $ $ x_{277}^3 $ $ x_{277}^2, \overline{x_{76}}, $ $ \underline{x_{151}}, x_{136} $ $ x_{273}^4 $ $ x_{273}^3, x_{79}, $ $ x_{174}, x_{150} $
34 $ x_{290}^0 $ $ x_{34}, \overline{x_{75}}, \underline{x_{104}} $ $ x_{286}^1 $ $ \underline{x_{286}^0}, \overline{x_{76}}, $ $ \underline{x_{117}}, x_{42} $ $ x_{282}^2 $ $ x_{282}^1, x_{78}, $ $ x_{136}, \overline{x_{74}} $ $ x_{278}^3 $ $ x_{278}^2, x_{77}, $ $ x_{152}, x_{137} $ $ x_{274}^4 $ $ x_{274}^3, x_{80}, $ $ x_{175}, x_{151} $
Row Feedback bit calculaton because of (5) Column 0 Feedback bit calculaton because of (6) Column 1 Feedback bit calculaton because of (7) Column 2 Feedback bit calculaton because of (8) Column 3 Feedback bit calculaton because of (9) Column 4
Feedback bits State bits appeared on RHS of (5) Feedback bits State bits appeared on RHS of (6) Feedback bits State bits appeared on RHS of (7) Feedback bits State bits appeared on RHS of (8) Feedback bits State bits appeared on RHS of (2)
0 $ x_{256}^0 $ $ x_{0}, \underline{x_{41}}, \overline{x_{70}} $ $ x_{252}^1 $ $ x_{252}, x_{42}, $ $ x_{83}, x_{8} $ $ x_{248}^2 $ $ x_{248}, x_{44}, $ $ x_{102}, x_{40} $ $ x_{244}^3 $ $ x_{244}, x_{43}, $ $ x_{118}, x_{103} $ $ x_{240}^4 $ $ x_{240}, \overline{x_{46}}, $ $ \underline{x_{141}}, x_{117} $
1 $ x_{257}^0 $ $ x_{1}, \underline{x_{42}}, \overline{x_{71}} $ $ x_{253}^1 $ $ x_{253}, x_{43}, $ $ x_{84}, x_{9} $ $ x_{249}^2 $ $ x_{249}, x_{45}, $ $ x_{103}, x_{41} $ $ x_{245}^3 $ $ x_{245}, x_{44}, $ $ x_{119}, x_{104} $ $ x_{241}^4 $ $ x_{241}, \overline{x_{47}}, $ $ \underline{x_{142}}, x_{118} $
2 $ x_{258}^0 $ $ x_{2}, \underline{x_{43}}, \overline{x_{72}} $ $ x_{254}^1 $ $ x_{254}, x_{44}, $ $ x_{85}, x_{10} $ $ x_{250}^2 $ $ x_{250}, \overline{x_{46}}, $ $ \underline{x_{104}}, x_{42} $ $ x_{246}^3 $ $ x_{246}, x_{45}, $ $ x_{120}, x_{105} $ $ x_{242}^4 $ $ x_{242}, \overline{x_{48}}, $ $ \underline{x_{143}}, x_{119} $
3 $ x_{259}^0 $ $ x_{3}, \underline{x_{44}}, \overline{x_{73}} $ $ x_{255}^1 $ $ x_{255}, x_{45}, $ $ x_{86}, x_{11} $ $ x_{251}^2 $ $ x_{251}, \overline{x_{47}}, $ $ \underline{x_{105}}, x_{43} $ $ x_{247}^3 $ $ x_{247}, \overline{x_{46}}, $ $ \underline{x_{121}}, x_{106} $ $ x_{243}^4 $ $ x_{243}, \overline{x_{49}}, $ $ \underline{x_{144}}, x_{120} $
4 $ x_{260}^0 $ $ x_{4}, \underline{x_{45}}, \overline{x_{74}} $ $ x_{256}^1 $ $ x_{256}^0, \overline{x_{46}}, $ $ \underline{x_{87}}, x_{12} $ $ x_{252}^2 $ $ x_{252}^1, \overline{x_{48}}, $ $ \underline{x_{106}}, x_{44} $ $ x_{248}^3 $ $ x_{248}^2, \overline{x_{47}}, $ $ \underline{x_{122}}, x_{107} $ $ x_{244}^4 $ $ x_{244}^3, \overline{x_{50}}, $ $ \underline{x_{145}}, x_{121} $
5 $ x_{261}^0 $ $ x_{5}, \overline{x_{46}}, \overline{x_{75}} $ $ x_{257}^1 $ $ x_{257}^0, \overline{x_{47}}, $ $ \underline{x_{88}}, x_{13} $ $ x_{253}^2 $ $ x_{253}^1, \overline{x_{49}}, $ $ \underline{x_{107}}, x_{45} $ $ x_{249}^3 $ $ x_{249}^2, \overline{x_{48}}, $ $ \underline{x_{123}}, x_{108} $ $ x_{245}^4 $ $ x_{245}^3, \overline{x_{51}}, $ $ \underline{x_{146}}, x_{122} $
6 $ x_{262}^0 $ $ x_{6}, \overline{x_{47}}, \overline{x_{76}} $ $ x_{258}^1 $ $ x_{258}^0, \overline{x_{48}}, $ $ \underline{x_{89}}, x_{14} $ $ x_{254}^2 $ $ x_{254}^1, \overline{x_{50}}, $ $ \underline{x_{108}}, \overline{x_{46}} $ $ x_{250}^3 $ $ x_{250}^2, \overline{x_{49}}, $ $ \underline{x_{124}}, x_{109} $ $ x_{246}^4 $ $ x_{246}^3, \overline{x_{52}}, $ $ \underline{x_{147}}, x_{123} $
7 $ x_{263}^0 $ $ x_{7}, \overline{x_{48}}, \underline{x_{77}} $ $ x_{259}^1 $ $ x_{259}^0, \overline{x_{49}}, $ $ \underline{x_{90}}, x_{15} $ $ x_{255}^2 $ $ x_{255}^1, \overline{x_{51}}, $ $ \underline{x_{109}}, \overline{x_{47}} $ $ x_{251}^3 $ $ x_{251}^2, \overline{x_{50}}, $ $ \underline{x_{125}}, x_{110} $ $ x_{247}^4 $ $ x_{247}^3, \overline{x_{53}}, $ $ \underline{x_{148}}, x_{124} $
8 $ x_{264}^0 $ $ x_{8}, \overline{x_{49}}, \underline{x_{78}} $ $ x_{260}^1 $ $ x_{260}^0, \overline{x_{50}}, $ $ \underline{x_{91}}, x_{16} $ $ x_{256}^2 $ $ x_{256}^1, \overline{x_{52}}, $ $ \underline{x_{110}}, \overline{x_{48}} $ $ x_{252}^3 $ $ x_{252}^2, \overline{x_{51}}, $ $ \underline{x_{126}}, x_{111} $ $ x_{248}^4 $ $ x_{248}^3, \overline{x_{54}}, $ $ \underline{x_{149}}, x_{125} $
9 $ x_{265}^0 $ $ x_{9}, \overline{x_{50}}, \underline{x_{79}} $ $ x_{261}^1 $ $ x_{261}^0, \overline{x_{51}}, $ $ \underline{x_{92}}, x_{17} $ $ x_{257}^2 $ $ x_{257}^1, \overline{x_{53}}, $ $ \underline{x_{111}}, \overline{x_{49}} $ $ x_{253}^3 $ $ x_{253}^2, \overline{x_{52}}, $ $ \underline{x_{127}}, x_{112} $ $ x_{249}^4 $ $ x_{249}^3, \overline{x_{55}}, $ $ \underline{x_{150}}, x_{126} $
10 $ x_{266}^0 $ $ x_{10}, \overline{x_{51}}, \underline{x_{80}} $ $ x_{262}^1 $ $ x_{262}^0, \overline{x_{52}}, $ $ \underline{x_{93}}, x_{18} $ $ x_{258}^2 $ $ x_{258}^1, \overline{x_{54}}, $ $ \underline{x_{112}}, \overline{x_{50}} $ $ x_{254}^3 $ $ x_{254}^2, \overline{x_{53}}, $ $ \underline{x_{128}}, x_{113} $ $ x_{250}^4 $ $ x_{250}^3, \overline{x_{56}}, $ $ \underline{x_{151}}, x_{127} $
11 $ x_{267}^0 $ $ x_{11}, \overline{x_{52}}, \underline{x_{81}} $ $ x_{263}^1 $ $ x_{263}^0, \overline{x_{53}}, $ $ \underline{x_{94}}, x_{19} $ $ x_{259}^2 $ $ x_{259}^1, \overline{x_{55}}, $ $ \underline{x_{113}}, \overline{x_{51}} $ $ x_{255}^3 $ $ x_{255}^2, \overline{x_{54}}, $ $ \underline{x_{129}}, x_{114} $ $ x_{251}^4 $ $ x_{251}^3, \overline{x_{57}}, $ $ \underline{x_{152}}, x_{128} $
12 $ x_{268}^0 $ $ x_{12}, \overline{x_{53}}, \underline{x_{82}} $ $ x_{264}^1 $ $ x_{264}^0, \overline{x_{54}}, $ $ \underline{x_{95}}, x_{20} $ $ x_{260}^2 $ $ x_{260}^1, \overline{x_{56}}, $ $ \underline{x_{114}}, \overline{x_{52}} $ $ x_{256}^3 $ $ x_{256}^2, \overline{x_{55}}, $ $ \underline{x_{130}}, x_{115} $ $ x_{252}^4 $ $ x_{252}^3, \overline{x_{58}}, $ $ \underline{x_{153}}, x_{129} $
13 $ x_{269}^0 $ $ x_{13}, \overline{x_{54}}, \underline{x_{83}} $ $ x_{265}^1 $ $ x_{265}^0, \overline{x_{55}}, $ $ \underline{x_{96}}, x_{21} $ $ x_{261}^2 $ $ x_{261}^1, \overline{x_{57}}, $ $ \underline{x_{115}}, \overline{x_{53}} $ $ x_{257}^3 $ $ x_{257}^2, \overline{x_{56}}, $ $ \underline{x_{131}}, x_{116} $ $ x_{253}^4 $ $ x_{253}^3, \overline{x_{59}}, $ $ \underline{x_{154}}, x_{130} $
14 $ x_{270}^0 $ $ x_{14}, \overline{x_{55}}, \underline{x_{84}} $ $ x_{266}^1 $ $ x_{266}^0, \overline{x_{56}}, $ $ \underline{x_{97}}, x_{22} $ $ x_{262}^2 $ $ x_{262}^1, \overline{x_{58}}, $ $ \underline{x_{116}}, \overline{x_{54}} $ $ x_{258}^3 $ $ x_{258}^2, \overline{x_{57}}, $ $ \underline{x_{132}}, x_{117} $ $ x_{254}^4 $ $ x_{254}^3, \overline{x_{60}}, $ $ \underline{x_{155}}, x_{131} $
15 $ x_{271}^0 $ $ x_{15}, \overline{x_{56}}, \underline{x_{85}} $ $ x_{267}^1 $ $ x_{267}^0, \overline{x_{57}}, $ $ \underline{x_{98}}, x_{23} $ $ x_{263}^2 $ $ x_{263}^1, \overline{x_{59}}, $ $ \underline{x_{117}}, \overline{x_{55}} $ $ x_{259}^3 $ $ x_{259}^2, \overline{x_{58}}, $ $ \underline{x_{133}}, x_{118} $ $ x_{255}^4 $ $ x_{255}^3, \overline{x_{61}}, $ $ \underline{x_{156}}, x_{132} $
16 $ x_{272}^0 $ $ x_{16}, \overline{x_{57}}, \underline{x_{86}} $ $ x_{268}^1 $ $ x_{268}^0, \overline{x_{58}}, $ $ \underline{x_{99}}, x_{24} $ $ x_{264}^2 $ $ x_{264}^1, \overline{x_{60}}, $ $ \underline{x_{118}}, \overline{x_{56}} $ $ x_{260}^3 $ $ x_{260}^2, \overline{x_{59}}, $ $ \underline{x_{134}}, x_{119} $ $ x_{256}^4 $ $ x_{256}^3, \overline{x_{62}}, $ $ \underline{x_{157}}, x_{133} $
17 $ x_{273}^0 $ $ x_{17}, \overline{x_{58}}, \underline{x_{87}} $ $ x_{269}^1 $ $ x_{269}^0, \overline{x_{59}}, $ $ \underline{x_{100}}, x_{25} $ $ x_{265}^2 $ $ x_{265}^1, \overline{x_{61}}, $ $ \underline{x_{119}}, \overline{x_{57}} $ $ x_{261}^3 $ $ x_{261}^2, \overline{x_{60}}, $ $ \underline{x_{135}}, x_{120} $ $ x_{257}^4 $ $ x_{257}^3, \overline{x_{63}}, $ $ \underline{x_{158}}, x_{134} $
18 $ x_{274}^0 $ $ x_{18}, \overline{x_{59}}, \underline{x_{88}} $ $ x_{270}^1 $ $ x_{270}^0, \overline{x_{60}}, $ $ \underline{x_{101}}, x_{26} $ $ x_{266}^2 $ $ x_{266}^1, \overline{x_{62}}, $ $ \underline{x_{120}}, \overline{x_{58}} $ $ x_{262}^3 $ $ x_{262}^2, \overline{x_{61}}, $ $ \underline{x_{136}}, x_{121} $ $ x_{258}^4 $ $ x_{258}^3, \overline{x_{64}}, $ $ \underline{x_{159}}, x_{135} $
19 $ x_{275}^0 $ $ x_{19}, \overline{x_{60}}, \underline{x_{89}} $ $ x_{271}^1 $ $ x_{271}^0, \overline{x_{61}}, $ $ \underline{x_{102}}, x_{27} $ $ x_{267}^2 $ $ x_{267}^1, \overline{x_{63}}, $ $ \underline{x_{121}}, \overline{x_{59}} $ $ x_{263}^3 $ $ x_{263}^2, \overline{x_{62}}, $ $ \underline{x_{137}}, x_{122} $ $ x_{259}^4 $ $ x_{259}^3, \overline{x_{65}}, $ $ \underline{x_{160}}, x_{136} $
20 $ x_{276}^0 $ $ x_{20}, \overline{x_{61}}, \underline{x_{90}} $ $ x_{272}^1 $ $ x_{272}^0, \overline{x_{62}}, $ $ \underline{x_{103}}, x_{28} $ $ x_{268}^2 $ $ x_{268}^1, \overline{x_{64}}, $ $ \underline{x_{122}}, \overline{x_{60}} $ $ x_{264}^3 $ $ x_{264}^2, \overline{x_{63}}, $ $ \underline{x_{138}}, x_{123} $ $ x_{260}^4 $ $ x_{260}^3, \overline{x_{66}}, $ $ \underline{x_{161}}, x_{137} $
21 $ x_{277}^0 $ $ x_{21}, \overline{x_{62}}, \underline{x_{91}} $ $ x_{273}^1 $ $ x_{273}^0, \overline{x_{63}}, $ $ \underline{x_{104}}, x_{29} $ $ x_{269}^2 $ $ x_{269}^1, \overline{x_{65}}, $ $ \underline{x_{123}}, \overline{x_{61}} $ $ x_{265}^3 $ $ x_{265}^2, \overline{x_{64}}, $ $ \underline{x_{139}}, x_{124} $ $ x_{261}^4 $ $ x_{261}^3, \overline{x_{67}}, $ $ \underline{x_{162}}, x_{138} $
22 $ x_{278}^0 $ $ x_{22}, \overline{x_{63}}, \underline{x_{92}} $ $ x_{274}^1 $ $ x_{274}^0, \overline{x_{64}}, $ $ \underline{x_{105}}, x_{30} $ $ x_{270}^2 $ $ x_{270}^1, \overline{x_{66}}, $ $ \underline{x_{124}}, \overline{x_{62}} $ $ x_{266}^3 $ $ x_{266}^2, \overline{x_{65}}, $ $ \underline{x_{140}}, x_{125} $ $ x_{262}^4 $ $ x_{262}^3, \overline{x_{68}}, $ $ \underline{x_{163}}, x_{139} $
23 $ x_{279}^0 $ $ x_{23}, \overline{x_{64}}, \underline{x_{93}} $ $ x_{275}^1 $ $ x_{275}^0, \overline{x_{65}}, $ $ \underline{x_{106}}, x_{31} $ $ x_{271}^2 $ $ x_{271}^1, \overline{x_{67}}, $ $ \underline{x_{125}}, \overline{x_{63}} $ $ x_{267}^3 $ $ x_{267}^2, \overline{x_{66}}, $ $ \underline{x_{141}}, x_{126} $ $ x_{263}^4 $ $ x_{263}^3, \overline{x_{69}}, $ $ \underline{x_{164}}, x_{140} $
24 $ x_{280}^0 $ $ x_{24}, \overline{x_{65}}, \underline{x_{94}} $ $ x_{276}^1 $ $ x_{276}^0, \overline{x_{66}}, $ $ \underline{x_{107}}, x_{32} $ $ x_{272}^2 $ $ x_{272}^1, \overline{x_{68}}, $ $ \underline{x_{126}}, \overline{x_{64}} $ $ x_{268}^3 $ $ x_{268}^2, \overline{x_{67}}, $ $ \underline{x_{142}}, x_{127} $ $ x_{264}^4 $ $ x_{264}^3, \overline{x_{70}}, $ $ \underline{x_{165}}, x_{141} $
25 $ x_{281}^0 $ $ x_{25}, \overline{x_{66}}, \underline{x_{95}} $ $ x_{277}^1 $ $ x_{277}^0, \overline{x_{67}}, $ $ \underline{x_{108}}, x_{33} $ $ x_{273}^2 $ $ x_{273}^1, \overline{x_{69}}, $ $ \underline{x_{127}}, \overline{x_{65}} $ $ x_{269}^3 $ $ x_{269}^2, \overline{x_{68}}, $ $ \underline{x_{143}}, x_{128} $ $ x_{265}^4 $ $ x_{265}^3, \overline{x_{71}}, $ $ \underline{x_{166}}, x_{142} $
26 $ x_{282}^0 $ $ x_{26}, \overline{x_{67}}, \underline{x_{96}} $ $ x_{278}^1 $ $ x_{278}^0, \overline{x_{68}}, $ $ \underline{x_{109}}, x_{34} $ $ x_{274}^2 $ $ x_{274}^1, \overline{x_{70}}, $ $ \underline{x_{128}}, \overline{x_{66}} $ $ x_{270}^3 $ $ x_{270}^2, \overline{x_{69}}, $ $ \underline{x_{144}}, x_{129} $ $ x_{266}^4 $ $ x_{266}^3, \overline{x_{72}}, $ $ \underline{x_{167}}, x_{143} $
27 $ x_{283}^0 $ $ x_{27}, \overline{x_{68}}, \underline{x_{97}} $ $ x_{279}^1 $ $ x_{279}^0, \overline{x_{69}}, $ $ \underline{x_{110}}, x_{35} $ $ x_{275}^2 $ $ x_{275}^1, \overline{x_{71}}, $ $ \underline{x_{129}}, \overline{x_{67}} $ $ x_{271}^3 $ $ x_{271}^2, \overline{x_{70}}, $ $ \underline{x_{145}}, x_{130} $ $ x_{267}^4 $ $ x_{267}^3, \overline{x_{73}}, $ $ \underline{x_{168}}, x_{144} $
28 $ x_{284}^0 $ $ x_{28}, \overline{x_{69}}, \underline{x_{98}} $ $ x_{280}^1 $ $ x_{280}^0, \overline{x_{70}}, $ $ \underline{x_{111}}, x_{36} $ $ x_{276}^2 $ $ x_{276}^1, \overline{x_{72}}, $ $ \underline{x_{130}}, \overline{x_{68}} $ $ x_{272}^3 $ $ x_{272}^2, \overline{x_{71}}, $ $ \underline{x_{146}}, x_{131} $ $ x_{268}^4 $ $ x_{268}^3, \overline{x_{74}}, $ $ \underline{x_{169}}, x_{145} $
29 $ x_{285}^0 $ $ x_{29}, \overline{x_{70}}, \underline{x_{99}} $ $ x_{281}^1 $ $ x_{281}^0, \overline{x_{71}}, $ $ \underline{x_{112}}, x_{37} $ $ x_{277}^2 $ $ x_{277}^1, \overline{x_{73}}, $ $ \underline{x_{131}}, \overline{x_{69}} $ $ x_{273}^3 $ $ x_{273}^2, \overline{x_{72}}, $ $ \underline{x_{147}}, x_{132} $ $ x_{269}^4 $ $ x_{269}^3, \overline{x_{75}}, $ $ \underline{x_{170}}, x_{146} $
30 $ x_{286}^0 $ $ x_{30}, \overline{x_{71}}, \underline{x_{100}} $ $ x_{282}^1 $ $ x_{282}^0, \overline{x_{72}}, $ $ \underline{x_{113}}, x_{38} $ $ x_{278}^2 $ $ x_{278}^1, \overline{x_{74}}, $ $ \underline{x_{132}}, \overline{x_{70}} $ $ x_{274}^3 $ $ x_{274}^2, \overline{x_{73}}, $ $ \underline{x_{148}}, x_{133} $ $ x_{270}^4 $ $ x_{270}^3, \overline{x_{76}}, $ $ \underline{x_{171}}, x_{147} $
31 $ x_{287}^0 $ $ x_{31}, \overline{x_{72}}, \underline{x_{101}} $ $ x_{283}^1 $ $ x_{283}^0, \overline{x_{73}}, $ $ \underline{x_{114}}, x_{39} $ $ x_{279}^2 $ $ x_{279}^1, \overline{x_{75}}, $ $ \underline{x_{133}}, \overline{x_{71}} $ $ x_{275}^3 $ $ x_{275}^2, \overline{x_{74}}, $ $ \underline{x_{149}}, x_{134} $ $ x_{271}^4 $ $ x_{271}^3, x_{77}, $ $ x_{172}, x_{148} $
32 $ x_{288}^0 $ $ x_{32}, \overline{x_{73}}, \underline{x_{102}} $ $ x_{284}^1 $ $ x_{284}^0, \overline{x_{74}}, $ $ \underline{x_{115}}, x_{40} $ $ x_{280}^2 $ $ x_{280}^1, \overline{x_{76}}, $ $ \underline{x_{134}}, \overline{x_{72}} $ $ x_{276}^3 $ $ x_{276}^2, \overline{x_{75}}, $ $ \underline{x_{150}}, x_{135} $ $ x_{272}^4 $ $ x_{272}^3, x_{78}, $ $ x_{173}, x_{149} $
33 $ x_{289}^0 $ $ x_{33}, \overline{x_{74}}, \underline{x_{103}} $ $ x_{285}^1 $ $ x_{285}^0, \overline{x_{75}}, $ $ \underline{x_{116}}, x_{41} $ $ x_{281}^2 $ $ x_{281}^1, x_{77}, $ $ x_{135}, \overline{x_{73}} $ $ x_{277}^3 $ $ x_{277}^2, \overline{x_{76}}, $ $ \underline{x_{151}}, x_{136} $ $ x_{273}^4 $ $ x_{273}^3, x_{79}, $ $ x_{174}, x_{150} $
34 $ x_{290}^0 $ $ x_{34}, \overline{x_{75}}, \underline{x_{104}} $ $ x_{286}^1 $ $ \underline{x_{286}^0}, \overline{x_{76}}, $ $ \underline{x_{117}}, x_{42} $ $ x_{282}^2 $ $ x_{282}^1, x_{78}, $ $ x_{136}, \overline{x_{74}} $ $ x_{278}^3 $ $ x_{278}^2, x_{77}, $ $ x_{152}, x_{137} $ $ x_{274}^4 $ $ x_{274}^3, x_{80}, $ $ x_{175}, x_{151} $
Table 2.  State Bits required to calculate feedback bits
Row Feedback bit calculaton because of (10) Column 5 Feedback bit calculaton because of (11) Column 6 Feedback bit calculaton because of (12) Column 7 Feedback bit calculaton because of (13) Column 8 Feedback bit calculaton because of (14) Column 9
Feedback bits State bits appeared on RHS of (10) Feedback bits State bits appeared on RHS of (11) Feedback bits State bits appeared on RHS of (12) Feedback bits State bits appeared on RHS of (13) Feedback bits State bits appeared on RHS of (14)
0 $ x_{236}^5 $ $ x_{236}, \overline{x_{67}}, \underline{x_{90}, x_{110}, x_{137}} $ $ x_{232}^6 $ $ x_{232}, \overline{x_{50}}, $ $ \underline{x_{159}}, x_{189} $ $ x_{218}^7 $ $ x_{218}, \underline{x_{3}}, \overline{x_{32}} $ $ x_{214}^8 $ $ x_{214}, x_{4}, x_{45} $ $ x_{210}^9 $ $ x_{210}, \underline{x_{6}}, \overline{x_{64}} $
1 $ x_{237}^5 $ $ x_{237}, \overline{x_{68}}, \underline{x_{91}, x_{111}, x_{138}} $ $ x_{233}^6 $ $ x_{233}, \overline{x_{51}}, $ $ \underline{x_{160}}, x_{190} $ $ x_{219}^7 $ $ x_{219}, \underline{x_{4}}, \overline{x_{33}} $ $ x_{215}^8 $ $ x_{215}, \underline{x_{5}}, \overline{x_{46}} $ $ x_{211}^9 $ $ x_{211}, \underline{x_{7}}, \overline{x_{65}} $
2 $ x_{238}^5 $ $ x_{238}, \overline{x_{69}}, \underline{x_{92}, x_{112}, x_{139}} $ $ x_{234}^6 $ $ x_{234}, \overline{x_{52}}, $ $ \underline{x_{161}}, x_{191} $ $ x_{220}^7 $ $ x_{220}, \underline{x_{5}}, \overline{x_{34}} $ $ x_{216}^8 $ $ x_{216}, \underline{x_{6}}, \overline{x_{47}} $ $ x_{212}^9 $ $ x_{212}, \underline{x_{8}}, \overline{x_{66}} $
3 $ x_{239}^5 $ $ x_{239}, \overline{x_{70}}, \underline{x_{93}, x_{113}, x_{140}} $ $ x_{235}^6 $ $ x_{235}, \overline{x_{53}}, $ $ \underline{x_{162}}, x_{192} $ $ x_{221}^7 $ $ x_{221}, \underline{x_{6}}, \overline{x_{35}} $ $ x_{217}^8 $ $ x_{217}, \underline{x_{7}}, \overline{x_{48}} $ $ x_{213}^9 $ $ x_{213}, \underline{x_{9}}, \overline{x_{67}} $
4 $ x_{240}^5 $ $ x_{240}^4, \overline{x_{71}}, \underline{x_{94}, x_{114}, x_{141}} $ $ x_{236}^6 $ $ x_{236}^5, \overline{x_{54}}, $ $ \underline{x_{163}}, x_{193} $ $ x_{222}^7 $ $ x_{222}, \underline{x_{7}}, \overline{x_{36}} $ $ x_{218}^8 $ $ x_{218}^7, \underline{x_{8}}, \overline{x_{49}} $ $ x_{214}^9 $ $ x_{214}^8, \underline{x_{10}}, \overline{x_{68}} $
5 $ x_{241}^5 $ $ x_{241}^4, \overline{x_{72}}, \underline{x_{95}, x_{115}, x_{142}} $ $ x_{237}^6 $ $ x_{237}^5, \overline{x_{55}}, $ $ \underline{x_{164}}, x_{194}^{13} $ $ x_{223}^7 $ $ x_{223}, x_{8}, x_{37} $ $ x_{219}^8 $ $ x_{219}^7, \underline{x_{9}}, \overline{x_{50}} $ $ x_{215}^9 $ $ x_{215}^8, \underline{x_{11}}, \overline{x_{69}} $
6 $ x_{242}^5 $ $ x_{242}^4, \overline{x_{73}}, \underline{x_{96}, x_{116}, x_{143}} $ $ x_{238}^6 $ $ x_{238}^5, \overline{x_{56}}, $ $ \underline{x_{165}}, x_{195}^{13} $ $ x_{224}^7 $ $ x_{224}, x_{9}, x_{38} $ $ x_{220}^8 $ $ x_{220}^7, \underline{x_{10}}, \overline{x_{51}} $ $ x_{216}^9 $ $ x_{216}^8, \underline{x_{12}}, \overline{x_{70}} $
7 $ x_{243}^5 $ $ x_{243}^4, \overline{x_{74}}, \underline{x_{97}, x_{117}, x_{144}} $ $ x_{239}^6 $ $ x_{239}^5, \overline{x_{57}}, $ $ \underline{x_{166}}, x_{196}^{13} $ $ x_{225}^7 $ $ x_{225}, x_{10}, x_{39} $ $ x_{221}^8 $ $ x_{221}^7, \underline{x_{11}}, \overline{x_{52}} $ $ x_{217}^9 $ $ x_{217}^8, \underline{x_{13}}, \overline{x_{71}} $
8 $ x_{244}^5 $ $ x_{244}^4, \overline{x_{75}}, \underline{x_{98}, x_{118}, x_{145}} $ $ x_{240}^6 $ $ x_{240}^5, \overline{x_{58}}, $ $ \underline{x_{167}}, x_{197}^{13} $ $ x_{226}^7 $ $ x_{226}, x_{11}, x_{40} $ $ x_{222}^8 $ $ x_{222}^7, \underline{x_{12}}, \overline{x_{53}} $ $ x_{218}^9 $ $ x_{218}^8, \underline{x_{14}}, \overline{x_{72}} $
9 $ x_{245}^5 $ $ x_{245}^4, \overline{x_{76}}, \underline{x_{99}, x_{119}, x_{146}} $ $ x_{241}^6 $ $ x_{241}^5, \overline{x_{59}}, $ $ \underline{x_{168}}, x_{198}^{13} $ $ x_{227}^7 $ $ x_{227}, x_{12}, x_{41} $ $ x_{223}^8 $ $ x_{223}^7, \underline{x_{13}}, \overline{x_{54}} $ $ x_{219}^9 $ $ x_{219}^8, \underline{x_{15}}, \overline{x_{73}} $
10 $ x_{246}^5 $ $ x_{246}^4, x_{77}, x_{100}, x_{120}, x_{147} $ $ x_{242}^6 $ $ x_{242}^5, \overline{x_{60}}, $ $ \underline{x_{169}}, x_{199}^{13} $ $ x_{228}^7 $ $ x_{228}, x_{13}, x_{42} $ $ x_{224}^8 $ $ x_{224}^7, \underline{x_{14}}, \overline{x_{55}} $ $ x_{220}^9 $ $ x_{220}^8, \underline{x_{16}}, \overline{x_{74}} $
11 $ x_{247}^5 $ $ x_{247}^4, x_{78}, x_{101}, x_{121}, x_{148} $ $ x_{243}^6 $ $ x_{243}^5, \overline{x_{61}}, $ $ \underline{x_{170}}, x_{200}^{13} $ $ x_{229}^7 $ $ x_{229}, x_{14}, x_{43} $ $ x_{225}^8 $ $ x_{225}^7, \underline{x_{15}}, \overline{x_{56}} $ $ x_{221}^9 $ $ x_{221}^8, \underline{x_{17}}, \overline{x_{75}} $
12 $ x_{248}^5 $ $ x_{248}^4, x_{79}, x_{102}, x_{122}, x_{149} $ $ x_{244}^6 $ $ x_{244}^5, \overline{x_{62}}, $ $ \underline{x_{171}}, x_{201}^{13} $ $ x_{230}^7 $ $ x_{230}, x_{15}, x_{44} $ $ x_{226}^8 $ $ x_{226}^7, \underline{x_{16}}, \overline{x_{57}} $ $ x_{222}^9 $ $ x_{222}^8, \underline{x_{18}}, \overline{x_{76}} $
13 $ x_{249}^5 $ $ x_{249}^4, x_{80}, x_{103}, x_{123}, x_{150} $ $ x_{245}^6 $ $ x_{245}^5, \overline{x_{63}}, $ $ \underline{x_{172}}, x_{202}^{13} $ $ x_{231}^7 $ $ x_{231}, x_{16}, x_{45} $ $ x_{227}^8 $ $ x_{227}^7, \underline{x_{17}}, \overline{x_{58}} $ $ x_{223}^9 $ $ x_{223}^8, x_{19}, x_{77} $
14 $ x_{250}^5 $ $ x_{250}^4, x_{81}, x_{104}, x_{124}, x_{151} $ $ x_{246}^6 $ $ x_{246}^5, \overline{x_{64}}, $ $ \underline{x_{173}}, x_{203}^{13} $ $ x_{232}^7 $ $ x_{232}^6, \underline{x_{17}}, \overline{x_{46}} $ $ x_{228}^8 $ $ x_{228}^7, \underline{x_{18}}, \overline{x_{59}} $ $ x_{224}^9 $ $ x_{224}^8, x_{20}, x_{78} $
15 $ x_{251}^5 $ $ x_{251}^4, x_{82}, x_{105}, x_{125}, x_{152} $ $ x_{247}^6 $ $ x_{247}^5, \overline{x_{65}}, $ $ \underline{x_{174}}, x_{204}^{13} $ $ x_{233}^7 $ $ x_{233}^6, \underline{x_{18}}, \overline{x_{47}} $ $ x_{229}^8 $ $ x_{229}^7, \underline{x_{19}}, \overline{x_{60}} $ $ x_{225}^9 $ $ x_{225}^8, x_{21}, x_{79} $
16 $ x_{252}^5 $ $ x_{252}^4, x_{83}, x_{106}, x_{126}, x_{153} $ $ x_{248}^6 $ $ x_{248}^5, \overline{x_{66}}, $ $ \underline{x_{175}}, x_{205}^{13} $ $ x_{234}^7 $ $ x_{234}^6, \underline{x_{19}}, \overline{x_{48}} $ $ x_{230}^8 $ $ x_{230}^7, \underline{x_{20}}, \overline{x_{61}} $ $ x_{226}^9 $ $ x_{226}^8, x_{22}, x_{80} $
17 $ x_{253}^5 $ $ x_{253}^4, x_{84}, x_{107}, x_{127}, x_{154} $ $ x_{249}^6 $ $ x_{249}^5, \overline{x_{67}}, $ $ \underline{x_{176}}, x_{206}^{13} $ $ x_{235}^7 $ $ x_{235}^6, \underline{x_{20}}, \overline{x_{49}} $ $ x_{231}^8 $ $ x_{231}^7, \underline{x_{21}}, \overline{x_{62}} $ $ x_{227}^9 $ $ x_{227}^8, x_{23}, x_{81} $
18 $ x_{254}^5 $ $ x_{254}^4, x_{85}, x_{108}, x_{128}, x_{155} $ $ x_{250}^6 $ $ x_{250}^5, \overline{x_{68}}, $ $ \underline{x_{177}}, x_{207}^{13} $ $ x_{236}^7 $ $ x_{236}^6, \underline{x_{21}}, \overline{x_{50}} $ $ x_{232}^8 $ $ x_{232}^7, \underline{x_{22}}, \overline{x_{63}} $ $ x_{228}^9 $ $ x_{228}^8, x_{24}, x_{82} $
19 $ x_{255}^5 $ $ x_{255}^4, x_{86}, x_{109}, x_{129}, x_{156} $ $ x_{251}^6 $ $ x_{251}^5, \overline{x_{69}}, $ $ \underline{x_{178}}, x_{208}^{13} $ $ x_{237}^7 $ $ x_{237}^6, \underline{x_{22}}, \overline{x_{51}} $ $ x_{233}^8 $ $ x_{233}^7, \underline{x_{23}}, \overline{x_{64}} $ $ x_{229}^9 $ $ x_{229}^8, x_{25}, x_{83} $
20 $ x_{256}^5 $ $ x_{256}^4, x_{87}, x_{110}, x_{130}, x_{157} $ $ x_{252}^6 $ $ x_{252}^5, \overline{x_{70}}, $ $ \underline{x_{179}}, x_{209}^{13} $ $ x_{238}^7 $ $ x_{238}^6, \underline{x_{23}}, \overline{x_{52}} $ $ x_{234}^8 $ $ x_{234}^7, \underline{x_{24}}, \overline{x_{65}} $ $ x_{230}^9 $ $ x_{230}^8, x_{26}, x_{84} $
21 $ x_{257}^5 $ $ x_{257}^4, x_{88}, x_{111}, x_{131}, x_{158} $ $ x_{253}^6 $ $ x_{253}^5, \overline{x_{71}}, $ $ \underline{x_{180}}, x_{210}^{13} $ $ x_{239}^7 $ $ x_{239}^6, \underline{x_{24}}, \overline{x_{53}} $ $ x_{235}^8 $ $ x_{235}^7, \underline{x_{25}}, \overline{x_{66}} $ $ x_{231}^9 $ $ x_{231}^8, x_{27}, x_{85} $
22 $ x_{258}^5 $ $ x_{258}^4, x_{89}, x_{112}, x_{132}, x_{159} $ $ x_{254}^6 $ $ x_{254}^5, \overline{x_{72}}, $ $ \underline{x_{181}}, x_{211}^{13} $ $ x_{240}^7 $ $ x_{240}^6, \underline{x_{25}}, \overline{x_{54}} $ $ x_{236}^8 $ $ x_{236}^7, \underline{x_{26}}, \overline{x_{67}} $ $ x_{232}^9 $ $ x_{232}^8, x_{28}, x_{86} $
23 $ x_{259}^5 $ $ x_{259}^4, x_{90}, x_{113}, x_{133}, x_{160} $ $ x_{255}^6 $ $ x_{255}^5, \overline{x_{73}}, $ $ \underline{x_{182}}, x_{212}^{13} $ $ x_{241}^7 $ $ x_{241}^6, \underline{x_{26}}, \overline{x_{55}} $ $ x_{237}^8 $ $ x_{237}^7, \underline{x_{27}}, \overline{x_{68}} $ $ x_{233}^9 $ $ x_{233}^8, \overline{x_{29}}, \underline{x_{87}} $
24 $ x_{260}^5 $ $ x_{260}^4, x_{91}, x_{114}, x_{134}, x_{161} $ $ x_{256}^6 $ $ x_{256}^5, \overline{x_{74}}, $ $ \underline{x_{183}}, x_{213}^{13} $ $ x_{242}^7 $ $ x_{242}^6, \underline{x_{27}}, \overline{x_{56}} $ $ x_{238}^8 $ $ x_{238}^7, \underline{x_{28}}, \overline{x_{69}} $ $ x_{234}^9 $ $ x_{234}^8, \overline{x_{30}}, \underline{x_{88}} $
25 $ x_{261}^5 $ $ x_{261}^4, x_{92}, x_{115}, x_{135}, x_{162} $ $ x_{257}^6 $ $ x_{257}^5, \overline{x_{75}}, $ $ \underline{x_{184}}, x_{214}^{13} $ $ x_{243}^7 $ $ x_{243}^6, \underline{x_{28}}, \overline{x_{57}} $ $ x_{239}^8 $ $ x_{239}^7, \overline{x_{29}}, \overline{x_{70}} $ $ x_{235}^9 $ $ x_{235}^8, \overline{x_{31}}, \underline{x_{89}} $
26 $ x_{262}^5 $ $ x_{262}^4, x_{93}, x_{116}, x_{136}, x_{163} $ $ x_{258}^6 $ $ x_{258}^5, \overline{x_{76}}, $ $ \underline{x_{185}}, x_{215}^{13} $ $ x_{244}^7 $ $ x_{244}^6, \overline{x_{29}}, \overline{x_{58}} $ $ x_{240}^8 $ $ x_{240}^7, \overline{x_{30}}, \overline{x_{71}} $ $ x_{236}^9 $ $ x_{236}^8, \overline{x_{32}}, \underline{x_{90}} $
27 $ x_{263}^5 $ $ x_{263}^4, x_{94}, x_{117}, x_{137}, x_{164} $ $ x_{259}^6 $ $ x_{259}^5, x_{77}, $ $ x_{186}, x_{216}^{13} $ $ x_{245}^7 $ $ x_{245}^6, \overline{x_{30}}, \overline{x_{59}} $ $ x_{241}^8 $ $ x_{241}^7, \overline{x_{31}}, \overline{x_{72}} $ $ x_{237}^9 $ $ x_{237}^8, \overline{x_{33}}, \underline{x_{91}} $
28 $ x_{264}^5 $ $ x_{264}^4, x_{95}, x_{118}, x_{138}, x_{165} $ $ x_{260}^6 $ $ x_{260}^5, x_{78}, $ $ x_{187}, x_{217}^{13} $ $ x_{246}^7 $ $ x_{246}^6, \overline{x_{31}}, \overline{x_{60}} $ $ x_{242}^8 $ $ x_{242}^7, \overline{x_{32}}, \overline{x_{73}} $ $ x_{238}^9 $ $ x_{238}^8, \overline{x_{34}}, \underline{x_{92}} $
29 $ x_{265}^5 $ $ x_{265}^4, x_{96}, x_{119}, x_{139}, x_{166} $ $ x_{261}^6 $ $ x_{261}^5, x_{79}, $ $ x_{188}, x_{218}^{13} $ $ x_{247}^7 $ $ x_{247}^6, \overline{x_{32}}, \overline{x_{61}} $ $ x_{243}^8 $ $ x_{243}^7, \overline{x_{33}}, \overline{x_{74}} $ $ x_{239}^9 $ $ x_{239}^8, \overline{x_{35}}, \underline{x_{93}} $
30 $ x_{266}^5 $ $ x_{266}^4, x_{97}, x_{120}, x_{140}, x_{167} $ $ x_{262}^6 $ $ x_{262}^5, x_{80}, $ $ x_{189}, x_{219}^{13} $ $ x_{248}^7 $ $ x_{248}^6, \overline{x_{33}}, \overline{x_{62}} $ $ x_{244}^8 $ $ x_{244}^7, \overline{x_{34}}, \overline{x_{75}} $ $ x_{240}^9 $ $ x_{240}^8, \overline{x_{36}}, \underline{x_{94}} $
31 $ x_{267}^5 $ $ x_{267}^4, x_{98}, x_{121}, x_{141}, x_{168} $ $ x_{263}^6 $ $ x_{263}^5, x_{81}, $ $ x_{190}, x_{220}^{13} $ $ x_{249}^7 $ $ x_{249}^6, \overline{x_{34}}, \overline{x_{63}} $ $ x_{245}^8 $ $ x_{245}^7, \overline{x_{35}}, \overline{x_{76}} $ $ x_{241}^9 $ $ x_{241}^8, x_{37}, x_{95} $
32 $ x_{268}^5 $ $ x_{268}^4, x_{99}, x_{122}, x_{142}, x_{169} $ $ x_{264}^6 $ $ x_{264}^5, x_{82}, $ $ x_{191}, x_{221}^{13} $ $ x_{250}^7 $ $ x_{250}^6, \overline{x_{35}}, \overline{x_{64}} $ $ x_{246}^8 $ $ x_{246}^7, \overline{x_{36}},\underline{x_{77}} $ $ x_{242}^9 $ $ x_{242}^8, x_{38}, x_{96} $
33 $ x_{269}^5 $ $ x_{269}^4, x_{100}, x_{123}, x_{143}, x_{170} $ $ x_{265}^6 $ $ x_{265}^5, x_{83}, $ $ x_{192}, x_{222}^{13} $ $ x_{251}^7 $ $ x_{251}^6, \overline{x_{36}}, \overline{x_{65}} $ $ x_{247}^8 $ $ x_{247}^7, x_{37}, x_{78} $ $ x_{243}^9 $ $ x_{243}^8, x_{39}, x_{97} $
34 $ x_{270}^5 $ $ x_{270}^4, x_{101}, x_{124}, x_{144}, x_{171} $ $ x_{266}^6 $ $ x_{266}^5, x_{84}, $ $ x_{193}, x_{223}^{13} $ $ x_{252}^7 $ $ x_{252}^6, \underline{x_{37}}, \overline{x_{66}} $ $ x_{248}^8 $ $ x_{248}^7, x_{38}, x_{79} $ $ x_{244}^9 $ $ x_{244}^8, x_{40}, x_{98} $
Row Feedback bit calculaton because of (10) Column 5 Feedback bit calculaton because of (11) Column 6 Feedback bit calculaton because of (12) Column 7 Feedback bit calculaton because of (13) Column 8 Feedback bit calculaton because of (14) Column 9
Feedback bits State bits appeared on RHS of (10) Feedback bits State bits appeared on RHS of (11) Feedback bits State bits appeared on RHS of (12) Feedback bits State bits appeared on RHS of (13) Feedback bits State bits appeared on RHS of (14)
0 $ x_{236}^5 $ $ x_{236}, \overline{x_{67}}, \underline{x_{90}, x_{110}, x_{137}} $ $ x_{232}^6 $ $ x_{232}, \overline{x_{50}}, $ $ \underline{x_{159}}, x_{189} $ $ x_{218}^7 $ $ x_{218}, \underline{x_{3}}, \overline{x_{32}} $ $ x_{214}^8 $ $ x_{214}, x_{4}, x_{45} $ $ x_{210}^9 $ $ x_{210}, \underline{x_{6}}, \overline{x_{64}} $
1 $ x_{237}^5 $ $ x_{237}, \overline{x_{68}}, \underline{x_{91}, x_{111}, x_{138}} $ $ x_{233}^6 $ $ x_{233}, \overline{x_{51}}, $ $ \underline{x_{160}}, x_{190} $ $ x_{219}^7 $ $ x_{219}, \underline{x_{4}}, \overline{x_{33}} $ $ x_{215}^8 $ $ x_{215}, \underline{x_{5}}, \overline{x_{46}} $ $ x_{211}^9 $ $ x_{211}, \underline{x_{7}}, \overline{x_{65}} $
2 $ x_{238}^5 $ $ x_{238}, \overline{x_{69}}, \underline{x_{92}, x_{112}, x_{139}} $ $ x_{234}^6 $ $ x_{234}, \overline{x_{52}}, $ $ \underline{x_{161}}, x_{191} $ $ x_{220}^7 $ $ x_{220}, \underline{x_{5}}, \overline{x_{34}} $ $ x_{216}^8 $ $ x_{216}, \underline{x_{6}}, \overline{x_{47}} $ $ x_{212}^9 $ $ x_{212}, \underline{x_{8}}, \overline{x_{66}} $
3 $ x_{239}^5 $ $ x_{239}, \overline{x_{70}}, \underline{x_{93}, x_{113}, x_{140}} $ $ x_{235}^6 $ $ x_{235}, \overline{x_{53}}, $ $ \underline{x_{162}}, x_{192} $ $ x_{221}^7 $ $ x_{221}, \underline{x_{6}}, \overline{x_{35}} $ $ x_{217}^8 $ $ x_{217}, \underline{x_{7}}, \overline{x_{48}} $ $ x_{213}^9 $ $ x_{213}, \underline{x_{9}}, \overline{x_{67}} $
4 $ x_{240}^5 $ $ x_{240}^4, \overline{x_{71}}, \underline{x_{94}, x_{114}, x_{141}} $ $ x_{236}^6 $ $ x_{236}^5, \overline{x_{54}}, $ $ \underline{x_{163}}, x_{193} $ $ x_{222}^7 $ $ x_{222}, \underline{x_{7}}, \overline{x_{36}} $ $ x_{218}^8 $ $ x_{218}^7, \underline{x_{8}}, \overline{x_{49}} $ $ x_{214}^9 $ $ x_{214}^8, \underline{x_{10}}, \overline{x_{68}} $
5 $ x_{241}^5 $ $ x_{241}^4, \overline{x_{72}}, \underline{x_{95}, x_{115}, x_{142}} $ $ x_{237}^6 $ $ x_{237}^5, \overline{x_{55}}, $ $ \underline{x_{164}}, x_{194}^{13} $ $ x_{223}^7 $ $ x_{223}, x_{8}, x_{37} $ $ x_{219}^8 $ $ x_{219}^7, \underline{x_{9}}, \overline{x_{50}} $ $ x_{215}^9 $ $ x_{215}^8, \underline{x_{11}}, \overline{x_{69}} $
6 $ x_{242}^5 $ $ x_{242}^4, \overline{x_{73}}, \underline{x_{96}, x_{116}, x_{143}} $ $ x_{238}^6 $ $ x_{238}^5, \overline{x_{56}}, $ $ \underline{x_{165}}, x_{195}^{13} $ $ x_{224}^7 $ $ x_{224}, x_{9}, x_{38} $ $ x_{220}^8 $ $ x_{220}^7, \underline{x_{10}}, \overline{x_{51}} $ $ x_{216}^9 $ $ x_{216}^8, \underline{x_{12}}, \overline{x_{70}} $
7 $ x_{243}^5 $ $ x_{243}^4, \overline{x_{74}}, \underline{x_{97}, x_{117}, x_{144}} $ $ x_{239}^6 $ $ x_{239}^5, \overline{x_{57}}, $ $ \underline{x_{166}}, x_{196}^{13} $ $ x_{225}^7 $ $ x_{225}, x_{10}, x_{39} $ $ x_{221}^8 $ $ x_{221}^7, \underline{x_{11}}, \overline{x_{52}} $ $ x_{217}^9 $ $ x_{217}^8, \underline{x_{13}}, \overline{x_{71}} $
8 $ x_{244}^5 $ $ x_{244}^4, \overline{x_{75}}, \underline{x_{98}, x_{118}, x_{145}} $ $ x_{240}^6 $ $ x_{240}^5, \overline{x_{58}}, $ $ \underline{x_{167}}, x_{197}^{13} $ $ x_{226}^7 $ $ x_{226}, x_{11}, x_{40} $ $ x_{222}^8 $ $ x_{222}^7, \underline{x_{12}}, \overline{x_{53}} $ $ x_{218}^9 $ $ x_{218}^8, \underline{x_{14}}, \overline{x_{72}} $
9 $ x_{245}^5 $ $ x_{245}^4, \overline{x_{76}}, \underline{x_{99}, x_{119}, x_{146}} $ $ x_{241}^6 $ $ x_{241}^5, \overline{x_{59}}, $ $ \underline{x_{168}}, x_{198}^{13} $ $ x_{227}^7 $ $ x_{227}, x_{12}, x_{41} $ $ x_{223}^8 $ $ x_{223}^7, \underline{x_{13}}, \overline{x_{54}} $ $ x_{219}^9 $ $ x_{219}^8, \underline{x_{15}}, \overline{x_{73}} $
10 $ x_{246}^5 $ $ x_{246}^4, x_{77}, x_{100}, x_{120}, x_{147} $ $ x_{242}^6 $ $ x_{242}^5, \overline{x_{60}}, $ $ \underline{x_{169}}, x_{199}^{13} $ $ x_{228}^7 $ $ x_{228}, x_{13}, x_{42} $ $ x_{224}^8 $ $ x_{224}^7, \underline{x_{14}}, \overline{x_{55}} $ $ x_{220}^9 $ $ x_{220}^8, \underline{x_{16}}, \overline{x_{74}} $
11 $ x_{247}^5 $ $ x_{247}^4, x_{78}, x_{101}, x_{121}, x_{148} $ $ x_{243}^6 $ $ x_{243}^5, \overline{x_{61}}, $ $ \underline{x_{170}}, x_{200}^{13} $ $ x_{229}^7 $ $ x_{229}, x_{14}, x_{43} $ $ x_{225}^8 $ $ x_{225}^7, \underline{x_{15}}, \overline{x_{56}} $ $ x_{221}^9 $ $ x_{221}^8, \underline{x_{17}}, \overline{x_{75}} $
12 $ x_{248}^5 $ $ x_{248}^4, x_{79}, x_{102}, x_{122}, x_{149} $ $ x_{244}^6 $ $ x_{244}^5, \overline{x_{62}}, $ $ \underline{x_{171}}, x_{201}^{13} $ $ x_{230}^7 $ $ x_{230}, x_{15}, x_{44} $ $ x_{226}^8 $ $ x_{226}^7, \underline{x_{16}}, \overline{x_{57}} $ $ x_{222}^9 $ $ x_{222}^8, \underline{x_{18}}, \overline{x_{76}} $
13 $ x_{249}^5 $ $ x_{249}^4, x_{80}, x_{103}, x_{123}, x_{150} $ $ x_{245}^6 $ $ x_{245}^5, \overline{x_{63}}, $ $ \underline{x_{172}}, x_{202}^{13} $ $ x_{231}^7 $ $ x_{231}, x_{16}, x_{45} $ $ x_{227}^8 $ $ x_{227}^7, \underline{x_{17}}, \overline{x_{58}} $ $ x_{223}^9 $ $ x_{223}^8, x_{19}, x_{77} $
14 $ x_{250}^5 $ $ x_{250}^4, x_{81}, x_{104}, x_{124}, x_{151} $ $ x_{246}^6 $ $ x_{246}^5, \overline{x_{64}}, $ $ \underline{x_{173}}, x_{203}^{13} $ $ x_{232}^7 $ $ x_{232}^6, \underline{x_{17}}, \overline{x_{46}} $ $ x_{228}^8 $ $ x_{228}^7, \underline{x_{18}}, \overline{x_{59}} $ $ x_{224}^9 $ $ x_{224}^8, x_{20}, x_{78} $
15 $ x_{251}^5 $ $ x_{251}^4, x_{82}, x_{105}, x_{125}, x_{152} $ $ x_{247}^6 $ $ x_{247}^5, \overline{x_{65}}, $ $ \underline{x_{174}}, x_{204}^{13} $ $ x_{233}^7 $ $ x_{233}^6, \underline{x_{18}}, \overline{x_{47}} $ $ x_{229}^8 $ $ x_{229}^7, \underline{x_{19}}, \overline{x_{60}} $ $ x_{225}^9 $ $ x_{225}^8, x_{21}, x_{79} $
16 $ x_{252}^5 $ $ x_{252}^4, x_{83}, x_{106}, x_{126}, x_{153} $ $ x_{248}^6 $ $ x_{248}^5, \overline{x_{66}}, $ $ \underline{x_{175}}, x_{205}^{13} $ $ x_{234}^7 $ $ x_{234}^6, \underline{x_{19}}, \overline{x_{48}} $ $ x_{230}^8 $ $ x_{230}^7, \underline{x_{20}}, \overline{x_{61}} $ $ x_{226}^9 $ $ x_{226}^8, x_{22}, x_{80} $
17 $ x_{253}^5 $ $ x_{253}^4, x_{84}, x_{107}, x_{127}, x_{154} $ $ x_{249}^6 $ $ x_{249}^5, \overline{x_{67}}, $ $ \underline{x_{176}}, x_{206}^{13} $ $ x_{235}^7 $ $ x_{235}^6, \underline{x_{20}}, \overline{x_{49}} $ $ x_{231}^8 $ $ x_{231}^7, \underline{x_{21}}, \overline{x_{62}} $ $ x_{227}^9 $ $ x_{227}^8, x_{23}, x_{81} $
18 $ x_{254}^5 $ $ x_{254}^4, x_{85}, x_{108}, x_{128}, x_{155} $ $ x_{250}^6 $ $ x_{250}^5, \overline{x_{68}}, $ $ \underline{x_{177}}, x_{207}^{13} $ $ x_{236}^7 $ $ x_{236}^6, \underline{x_{21}}, \overline{x_{50}} $ $ x_{232}^8 $ $ x_{232}^7, \underline{x_{22}}, \overline{x_{63}} $ $ x_{228}^9 $ $ x_{228}^8, x_{24}, x_{82} $
19 $ x_{255}^5 $ $ x_{255}^4, x_{86}, x_{109}, x_{129}, x_{156} $ $ x_{251}^6 $ $ x_{251}^5, \overline{x_{69}}, $ $ \underline{x_{178}}, x_{208}^{13} $ $ x_{237}^7 $ $ x_{237}^6, \underline{x_{22}}, \overline{x_{51}} $ $ x_{233}^8 $ $ x_{233}^7, \underline{x_{23}}, \overline{x_{64}} $ $ x_{229}^9 $ $ x_{229}^8, x_{25}, x_{83} $
20 $ x_{256}^5 $ $ x_{256}^4, x_{87}, x_{110}, x_{130}, x_{157} $ $ x_{252}^6 $ $ x_{252}^5, \overline{x_{70}}, $ $ \underline{x_{179}}, x_{209}^{13} $ $ x_{238}^7 $ $ x_{238}^6, \underline{x_{23}}, \overline{x_{52}} $ $ x_{234}^8 $ $ x_{234}^7, \underline{x_{24}}, \overline{x_{65}} $ $ x_{230}^9 $ $ x_{230}^8, x_{26}, x_{84} $
21 $ x_{257}^5 $ $ x_{257}^4, x_{88}, x_{111}, x_{131}, x_{158} $ $ x_{253}^6 $ $ x_{253}^5, \overline{x_{71}}, $ $ \underline{x_{180}}, x_{210}^{13} $ $ x_{239}^7 $ $ x_{239}^6, \underline{x_{24}}, \overline{x_{53}} $ $ x_{235}^8 $ $ x_{235}^7, \underline{x_{25}}, \overline{x_{66}} $ $ x_{231}^9 $ $ x_{231}^8, x_{27}, x_{85} $
22 $ x_{258}^5 $ $ x_{258}^4, x_{89}, x_{112}, x_{132}, x_{159} $ $ x_{254}^6 $ $ x_{254}^5, \overline{x_{72}}, $ $ \underline{x_{181}}, x_{211}^{13} $ $ x_{240}^7 $ $ x_{240}^6, \underline{x_{25}}, \overline{x_{54}} $ $ x_{236}^8 $ $ x_{236}^7, \underline{x_{26}}, \overline{x_{67}} $ $ x_{232}^9 $ $ x_{232}^8, x_{28}, x_{86} $
23 $ x_{259}^5 $ $ x_{259}^4, x_{90}, x_{113}, x_{133}, x_{160} $ $ x_{255}^6 $ $ x_{255}^5, \overline{x_{73}}, $ $ \underline{x_{182}}, x_{212}^{13} $ $ x_{241}^7 $ $ x_{241}^6, \underline{x_{26}}, \overline{x_{55}} $ $ x_{237}^8 $ $ x_{237}^7, \underline{x_{27}}, \overline{x_{68}} $ $ x_{233}^9 $ $ x_{233}^8, \overline{x_{29}}, \underline{x_{87}} $
24 $ x_{260}^5 $ $ x_{260}^4, x_{91}, x_{114}, x_{134}, x_{161} $ $ x_{256}^6 $ $ x_{256}^5, \overline{x_{74}}, $ $ \underline{x_{183}}, x_{213}^{13} $ $ x_{242}^7 $ $ x_{242}^6, \underline{x_{27}}, \overline{x_{56}} $ $ x_{238}^8 $ $ x_{238}^7, \underline{x_{28}}, \overline{x_{69}} $ $ x_{234}^9 $ $ x_{234}^8, \overline{x_{30}}, \underline{x_{88}} $
25 $ x_{261}^5 $ $ x_{261}^4, x_{92}, x_{115}, x_{135}, x_{162} $ $ x_{257}^6 $ $ x_{257}^5, \overline{x_{75}}, $ $ \underline{x_{184}}, x_{214}^{13} $ $ x_{243}^7 $ $ x_{243}^6, \underline{x_{28}}, \overline{x_{57}} $ $ x_{239}^8 $ $ x_{239}^7, \overline{x_{29}}, \overline{x_{70}} $ $ x_{235}^9 $ $ x_{235}^8, \overline{x_{31}}, \underline{x_{89}} $
26 $ x_{262}^5 $ $ x_{262}^4, x_{93}, x_{116}, x_{136}, x_{163} $ $ x_{258}^6 $ $ x_{258}^5, \overline{x_{76}}, $ $ \underline{x_{185}}, x_{215}^{13} $ $ x_{244}^7 $ $ x_{244}^6, \overline{x_{29}}, \overline{x_{58}} $ $ x_{240}^8 $ $ x_{240}^7, \overline{x_{30}}, \overline{x_{71}} $ $ x_{236}^9 $ $ x_{236}^8, \overline{x_{32}}, \underline{x_{90}} $
27 $ x_{263}^5 $ $ x_{263}^4, x_{94}, x_{117}, x_{137}, x_{164} $ $ x_{259}^6 $ $ x_{259}^5, x_{77}, $ $ x_{186}, x_{216}^{13} $ $ x_{245}^7 $ $ x_{245}^6, \overline{x_{30}}, \overline{x_{59}} $ $ x_{241}^8 $ $ x_{241}^7, \overline{x_{31}}, \overline{x_{72}} $ $ x_{237}^9 $ $ x_{237}^8, \overline{x_{33}}, \underline{x_{91}} $
28 $ x_{264}^5 $ $ x_{264}^4, x_{95}, x_{118}, x_{138}, x_{165} $ $ x_{260}^6 $ $ x_{260}^5, x_{78}, $ $ x_{187}, x_{217}^{13} $ $ x_{246}^7 $ $ x_{246}^6, \overline{x_{31}}, \overline{x_{60}} $ $ x_{242}^8 $ $ x_{242}^7, \overline{x_{32}}, \overline{x_{73}} $ $ x_{238}^9 $ $ x_{238}^8, \overline{x_{34}}, \underline{x_{92}} $
29 $ x_{265}^5 $ $ x_{265}^4, x_{96}, x_{119}, x_{139}, x_{166} $ $ x_{261}^6 $ $ x_{261}^5, x_{79}, $ $ x_{188}, x_{218}^{13} $ $ x_{247}^7 $ $ x_{247}^6, \overline{x_{32}}, \overline{x_{61}} $ $ x_{243}^8 $ $ x_{243}^7, \overline{x_{33}}, \overline{x_{74}} $ $ x_{239}^9 $ $ x_{239}^8, \overline{x_{35}}, \underline{x_{93}} $
30 $ x_{266}^5 $ $ x_{266}^4, x_{97}, x_{120}, x_{140}, x_{167} $ $ x_{262}^6 $ $ x_{262}^5, x_{80}, $ $ x_{189}, x_{219}^{13} $ $ x_{248}^7 $ $ x_{248}^6, \overline{x_{33}}, \overline{x_{62}} $ $ x_{244}^8 $ $ x_{244}^7, \overline{x_{34}}, \overline{x_{75}} $ $ x_{240}^9 $ $ x_{240}^8, \overline{x_{36}}, \underline{x_{94}} $
31 $ x_{267}^5 $ $ x_{267}^4, x_{98}, x_{121}, x_{141}, x_{168} $ $ x_{263}^6 $ $ x_{263}^5, x_{81}, $ $ x_{190}, x_{220}^{13} $ $ x_{249}^7 $ $ x_{249}^6, \overline{x_{34}}, \overline{x_{63}} $ $ x_{245}^8 $ $ x_{245}^7, \overline{x_{35}}, \overline{x_{76}} $ $ x_{241}^9 $ $ x_{241}^8, x_{37}, x_{95} $
32 $ x_{268}^5 $ $ x_{268}^4, x_{99}, x_{122}, x_{142}, x_{169} $ $ x_{264}^6 $ $ x_{264}^5, x_{82}, $ $ x_{191}, x_{221}^{13} $ $ x_{250}^7 $ $ x_{250}^6, \overline{x_{35}}, \overline{x_{64}} $ $ x_{246}^8 $ $ x_{246}^7, \overline{x_{36}},\underline{x_{77}} $ $ x_{242}^9 $ $ x_{242}^8, x_{38}, x_{96} $
33 $ x_{269}^5 $ $ x_{269}^4, x_{100}, x_{123}, x_{143}, x_{170} $ $ x_{265}^6 $ $ x_{265}^5, x_{83}, $ $ x_{192}, x_{222}^{13} $ $ x_{251}^7 $ $ x_{251}^6, \overline{x_{36}}, \overline{x_{65}} $ $ x_{247}^8 $ $ x_{247}^7, x_{37}, x_{78} $ $ x_{243}^9 $ $ x_{243}^8, x_{39}, x_{97} $
34 $ x_{270}^5 $ $ x_{270}^4, x_{101}, x_{124}, x_{144}, x_{171} $ $ x_{266}^6 $ $ x_{266}^5, x_{84}, $ $ x_{193}, x_{223}^{13} $ $ x_{252}^7 $ $ x_{252}^6, \underline{x_{37}}, \overline{x_{66}} $ $ x_{248}^8 $ $ x_{248}^7, x_{38}, x_{79} $ $ x_{244}^9 $ $ x_{244}^8, x_{40}, x_{98} $
Table 3.  State Bits required to calculate feedback bits
Row Feedback bit calculaton because of (15) Column 10 Feedback bit calculaton because of (16) Column11 Feedback bit calculaton because of (17) Column 12 Feedback bit calculaton because of (18) Column 13
Feedback bits State bits appeared on RHS of (15) Feedback bits State bits appeared on RHS of (16) Feedback bits State bits appeared on RHS of (17) Feedback bits State bits appeared on RHS of (18)
0 $ x_{206}^{10} $ $ x_{206}, x_{5}, x_{80} $ $ x_{202}^{11} $ $ x_{202}, x_{8}, $ $ x_{103} $ $ x_{198}^{12} $ $ x_{198}, \overline{x_{29}}, \overline{x_{52}}, \overline{x_{72}}, \underline{x_{99}} $ $ x_{194}^{13} $ $ x_{194}, x_{12}, x_{121} $
1 $ x_{207}^{10} $ $ x_{207}, x_{6}, x_{81} $ $ x_{203}^{11} $ $ x_{203}, x_{9}, $ $ x_{104} $ $ x_{199}^{12} $ $ x_{199}, \overline{x_{30}}, \overline{x_{53}}, \overline{x_{73}}, \underline{x_{100}} $ $ x_{195}^{13} $ $ x_{195}, x_{13}, x_{122} $
2 $ x_{208}^{10} $ $ x_{208}, x_{7}, x_{82} $ $ x_{204}^{11} $ $ x_{204}, x_{10}, $ $ x_{105} $ $ x_{200}^{12} $ $ x_{200}, \overline{x_{31}}, \overline{x_{54}}, \overline{x_{74}}, \underline{x_{101}} $ $ x_{196}^{13} $ $ x_{196}, x_{14}, x_{123} $
3 $ x_{209}^{10} $ $ x_{209}, x_{8}, x_{83} $ $ x_{205}^{11} $ $ x_{205}, x_{11}, $ $ x_{106} $ $ x_{201}^{12} $ $ x_{201}, \overline{x_{32}}, \overline{x_{55}}, \overline{x_{75}}, \underline{x_{102}} $ $ x_{197}^{13} $ $ x_{197}, x_{15}, x_{124} $
4 $ x_{210}^{10} $ $ x_{210}^9, x_{9}, x_{84} $ $ x_{206}^{11} $ $ x_{206}^{10}, x_{12}, $ $ x_{107} $ $ x_{202}^{12} $ $ x_{202}^{11}, \overline{x_{33}}, \overline{x_{56}}, \overline{x_{76}}, \underline{x_{103}} $ $ x_{198}^{13} $ $ x_{198}^{12}, x_{16}, x_{125} $
5 $ x_{211}^{10} $ $ x_{211}^9, x_{10}, x_{85} $ $ x_{207}^{11} $ $ x_{207}^{10}, x_{13}, $ $ x_{108} $ $ x_{203}^{12} $ $ x_{203}^{11}, \overline{x_{34}}, \overline{x_{57}}, \underline{x_{77}}, \underline{x_{104}} $ $ x_{199}^{13} $ $ x_{199}^{12}, x_{17}, x_{126} $
6 $ x_{212}^{10} $ $ x_{212}^9, x_{11}, x_{86} $ $ x_{208}^{11} $ $ x_{208}^{10}, x_{14}, $ $ x_{109} $ $ x_{204}^{12} $ $ x_{204}^{11}, \overline{x_{35}}, \overline{x_{58}}, \underline{x_{78}}, \underline{x_{105}} $ $ x_{200}^{13} $ $ x_{200}^{12}, x_{18}, x_{127} $
7 $ x_{213}^{10} $ $ x_{213}^9, x_{12}, x_{87} $ $ x_{209}^{11} $ $ x_{209}^{10}, x_{15}, $ $ x_{110} $ $ x_{205}^{12} $ $ x_{205}^{11}, \overline{x_{36}}, \overline{x_{59}}, \underline{x_{79}}, \underline{x_{106}} $ $ x_{201}^{13} $ $ x_{201}^{12}, x_{19}, x_{128} $
8 $ x_{214}^{10} $ $ x_{214}^9, x_{13}, x_{88} $ $ x_{210}^{11} $ $ x_{210}^{10}, x_{16}, $ $ x_{111} $ $ x_{206}^{12} $ $ x_{206}^{11}, \underline{x_{37}}, \overline{x_{60}}, \underline{x_{80}}, \underline{x_{107}} $ $ x_{202}^{13} $ $ x_{202}^{12}, x_{20}, x_{129} $
9 $ x_{215}^{10} $ $ x_{215}^9, x_{14}, x_{89} $ $ x_{211}^{11} $ $ x_{211}^{10}, x_{17}, $ $ x_{112} $ $ x_{207}^{12} $ $ x_{207}^{11}, \underline{x_{38}}, \overline{x_{61}}, \underline{x_{81}}, \underline{x_{108}} $ $ x_{203}^{13} $ $ x_{203}^{12}, x_{21}, x_{130} $
10 $ x_{216}^{10} $ $ x_{216}^9, x_{15}, x_{90} $ $ x_{212}^{11} $ $ x_{212}^{10}, x_{18}, $ $ x_{113} $ $ x_{208}^{12} $ $ x_{208}^{11}, \underline{x_{39}}, \overline{x_{62}}, \underline{x_{82}}, \underline{x_{109}} $ $ x_{204}^{13} $ $ x_{204}^{12}, x_{22}, x_{131} $
11 $ x_{217}^{10} $ $ x_{217}^9, x_{16}, x_{91} $ $ x_{213}^{11} $ $ x_{213}^{10}, x_{19}, $ $ x_{114} $ $ x_{209}^{12} $ $ x_{209}^{11}, \underline{x_{40}}, \overline{x_{63}}, \underline{x_{83}}, \underline{x_{110}} $ $ x_{205}^{13} $ $ x_{205}^{12}, x_{23}, x_{132} $
12 $ x_{218}^{10} $ $ x_{218}^9, x_{17}, x_{92} $ $ x_{214}^{11} $ $ x_{214}^{10}, x_{20}, $ $ x_{115} $ $ x_{210}^{12} $ $ x_{210}^{11}, \underline{x_{41}}, \overline{x_{64}}, \underline{x_{84}}, \underline{x_{111}} $ $ x_{206}^{13} $ $ x_{206}^{12}, x_{24}, x_{133} $
13 $ x_{219}^{10} $ $ x_{219}^9, x_{18}, x_{93} $ $ x_{215}^{11} $ $ x_{215}^{10}, x_{21}, $ $ x_{116} $ $ x_{211}^{12} $ $ x_{211}^{11}, \underline{x_{42}}, \overline{x_{65}}, \underline{x_{85}}, \underline{x_{112}} $ $ x_{207}^{13} $ $ x_{207}^{12}, x_{25}, x_{134} $
14 $ x_{220}^{10} $ $ x_{220}^9, x_{19}, x_{94} $ $ x_{216}^{11} $ $ x_{216}^{10}, x_{22}, $ $ x_{117} $ $ x_{212}^{12} $ $ x_{212}^{11}, \underline{x_{43}}, \overline{x_{66}}, \underline{x_{86}}, \underline{x_{113}} $ $ x_{208}^{13} $ $ x_{208}^{12}, x_{26}, x_{135} $
15 $ x_{221}^{10} $ $ x_{221}^9, x_{20}, x_{95} $ $ x_{217}^{11} $ $ x_{217}^{10}, x_{23}, $ $ x_{118} $ $ x_{213}^{12} $ $ x_{213}^{11}, \underline{x_{44}}, \overline{x_{67}}, \underline{x_{87}}, \underline{x_{114}} $ $ x_{209}^{13} $ $ x_{209}^{12}, x_{27}, x_{136} $
16 $ x_{222}^{10} $ $ x_{222}^9, x_{21}, x_{96} $ $ x_{218}^{11} $ $ x_{218}^{10}, x_{24}, $ $ x_{119} $ $ x_{214}^{12} $ $ x_{214}^{11}, \underline{x_{45}}, \overline{x_{68}}, \underline{x_{88}}, \underline{x_{115}} $ $ x_{210}^{13} $ $ x_{210}^{12}, x_{28}, x_{137} $
17 $ x_{223}^{10} $ $ x_{223}^9, x_{22}, x_{97} $ $ x_{219}^{11} $ $ x_{219}^{10}, x_{25}, $ $ x_{120} $ $ x_{215}^{12} $ $ x_{215}^{11}, \overline{x_{46}}, \overline{x_{69}}, \underline{x_{89}}, \underline{x_{116}} $ $ x_{211}^{13} $ $ x_{211}^{12}, \overline{x_{29}}, \underline{x_{138}} $
18 $ x_{224}^{10} $ $ x_{224}^9, x_{23}, x_{98} $ $ x_{220}^{11} $ $ x_{220}^{10}, x_{26}, $ $ x_{121} $ $ x_{216}^{12} $ $ x_{216}^{11}, \overline{x_{47}}, \overline{x_{70}}, \underline{x_{90}}, \underline{x_{117}} $ $ x_{212}^{13} $ $ x_{212}^{12}, \overline{x_{30}}, \underline{x_{139}} $
19 $ x_{225}^{10} $ $ x_{225}^9, x_{24}, x_{99} $ $ x_{221}^{11} $ $ x_{221}^{10}, x_{27}, $ $ x_{122} $ $ x_{217}^{12} $ $ x_{217}^{11}, \overline{x_{48}}, \overline{x_{71}}, \underline{x_{91}}, \underline{x_{118}} $ $ x_{213}^{13} $ $ x_{213}^{12}, \overline{x_{31}}, \underline{x_{140}} $
20 $ x_{226}^{10} $ $ x_{226}^9, x_{25}, x_{100} $ $ x_{222}^{11} $ $ x_{222}^{10}, x_{28}, $ $ x_{123} $ $ x_{218}^{12} $ $ x_{218}^{11}, \overline{x_{49}}, \overline{x_{72}}, \underline{x_{92}}, \underline{x_{119}} $ $ x_{214}^{13} $ $ x_{214}^{12}, \overline{x_{32}}, \underline{x_{141}} $
21 $ x_{227}^{10} $ $ x_{227}^9, x_{26}, x_{101} $ $ x_{223}^{11} $ $ x_{223}^{10}, \overline{x_{29}}, $ $ \underline{x_{124}} $ $ x_{219}^{12} $ $ x_{219}^{11}, \overline{x_{50}}, \overline{x_{73}}, \underline{x_{93}}, \underline{x_{120}} $ $ x_{215}^{13} $ $ x_{215}^{12}, \overline{x_{33}}, \underline{x_{142}} $
22 $ x_{228}^{10} $ $ x_{228}^9, x_{27}, x_{102} $ $ x_{224}^{11} $ $ x_{224}^{10}, \overline{x_{30}}, $ $ \underline{x_{125}} $ $ x_{220}^{12} $ $ x_{220}^{11}, \overline{x_{51}}, \overline{x_{74}}, \underline{x_{94}}, \underline{x_{121}} $ $ x_{216}^{13} $ $ x_{216}^{12}, \overline{x_{34}}, \underline{x_{143}} $
23 $ x_{229}^{10} $ $ x_{229}^9, x_{28}, x_{103} $ $ x_{225}^{11} $ $ x_{225}^{10}, \overline{x_{31}}, $ $ \underline{x_{126}} $ $ x_{221}^{12} $ $ x_{221}^{11}, \overline{x_{52}}, \overline{x_{75}}, \underline{x_{95}}, \underline{x_{122}} $ $ x_{217}^{13} $ $ x_{217}^{12}, \overline{x_{35}}, \underline{x_{144}} $
24 $ x_{230}^{10} $ $ x_{230}^9, \overline{x_{29}}, \underline{x_{104}} $ $ x_{226}^{11} $ $ x_{226}^{10}, \overline{x_{32}}, $ $ \underline{x_{127}} $ $ x_{222}^{12} $ $ x_{222}^{11}, \overline{x_{53}}, \overline{x_{76}}, \underline{x_{96}}, \underline{x_{123}} $ $ x_{218}^{13} $ $ x_{218}^{12}, \overline{x_{36}}, \underline{x_{145}} $
25 $ x_{231}^{10} $ $ x_{231}^9, \overline{x_{30}}, \underline{x_{105}} $ $ x_{227}^{11} $ $ x_{227}^{10}, \overline{x_{33}}, $ $ \underline{x_{128}} $ $ x_{223}^{12} $ $ x_{223}^{11}, \overline{x_{54}}, \underline{x_{77}}, \underline{x_{97}}, \underline{x_{124}} $ $ x_{219}^{13} $ $ x_{219}^{12}, x_{37}, x_{146} $
26 $ x_{232}^{10} $ $ x_{232}^9, \overline{x_{31}}, \underline{x_{106}} $ $ x_{228}^{11} $ $ x_{228}^{10}, \overline{x_{34}}, $ $ \underline{x_{129}} $ $ x_{224}^{12} $ $ x_{224}^{11}, \overline{x_{55}}, \underline{x_{78}}, \underline{x_{98}}, \underline{x_{125}} $ $ x_{220}^{13} $ $ x_{220}^{12}, x_{38}, x_{147} $
27 $ x_{233}^{10} $ $ x_{233}^9, \overline{x_{32}}, \underline{x_{107}} $ $ x_{229}^{11} $ $ x_{229}^{10}, \overline{x_{35}}, $ $ \underline{x_{130}} $ $ x_{225}^{12} $ $ x_{225}^{11}, \overline{x_{56}}, \underline{x_{79}}, \underline{x_{99}}, \underline{x_{126}} $ $ x_{221}^{13} $ $ x_{221}^{12}, x_{39}, x_{148} $
28 $ x_{234}^{10} $ $ x_{234}^9, \overline{x_{33}}, \underline{x_{108}} $ $ x_{230}^{11} $ $ x_{230}^{10}, \overline{x_{36}}, $ $ \underline{x_{131}} $ $ x_{226}^{12} $ $ x_{226}^{11}, \overline{x_{57}}, \underline{x_{80}}, \underline{x_{100}}, \underline{x_{127}} $ $ x_{222}^{13} $ $ x_{222}^{12}, x_{40}, x_{149} $
29 $ x_{235}^{10} $ $ x_{235}^9, \overline{x_{34}}, \underline{x_{109}} $ $ x_{231}^{11} $ $ x_{231}^{10}, x_{37}, $ $ x_{132} $ $ x_{227}^{12} $ $ x_{227}^{11}, \overline{x_{58}}, \underline{x_{81}}, \underline{x_{101}}, \underline{x_{128}} $ $ x_{223}^{13} $ $ x_{223}^{12}, x_{41}, x_{150} $
30 $ x_{236}^{10} $ $ x_{236}^9, \overline{x_{35}}, \underline{x_{110}} $ $ x_{232}^{11} $ $ x_{232}^{10}, x_{38}, $ $ x_{133} $ $ x_{228}^{12} $ $ x_{228}^{11}, \overline{x_{59}}, \underline{x_{82}}, \underline{x_{102}}, \underline{x_{129}} $ $ x_{224}^{13} $ $ x_{224}^{12}, x_{42}, x_{151} $
31 $ x_{237}^{10} $ $ x_{237}^9, \overline{x_{36}}, \underline{x_{111}} $ $ x_{233}^{11} $ $ x_{233}^{10}, x_{39}, $ $ x_{134} $ $ x_{229}^{12} $ $ x_{229}^{11}, \overline{x_{60}}, \underline{x_{83}}, \underline{x_{103}}, \underline{x_{130}} $ $ x_{225}^{13} $ $ x_{225}^{12}, x_{43}, x_{152} $
32 $ x_{238}^{10} $ $ x_{238}^9, x_{37}, x_{112} $ $ x_{234}^{11} $ $ x_{234}^{10}, x_{40}, $ $ x_{135} $ $ x_{230}^{12} $ $ x_{230}^{11}, \overline{x_{61}}, \underline{x_{84}}, \underline{x_{104}}, \underline{x_{131}} $ $ x_{226}^{13} $ $ x_{226}^{12}, x_{44}, x_{153} $
33 $ x_{239}^{10} $ $ x_{239}^9, x_{38}, x_{113} $ $ x_{235}^{11} $ $ x_{235}^{10}, x_{41}, $ $ x_{136} $ $ x_{231}^{12} $ $ x_{231}^{11}, \overline{x_{62}}, \underline{x_{85}}, \underline{x_{105}}, \underline{x_{132}} $ $ x_{227}^{13} $ $ x_{227}^{12}, x_{45}, x_{154} $
34 $ x_{240}^{10} $ $ x_{240}^9, x_{39}, x_{114} $ $ x_{236}^{11} $ $ x_{236}^{10}, x_{42}, $ $ x_{137} $ $ x_{232}^{12} $ $ x_{232}^{11}, \overline{x_{63}}, \underline{x_{86}}, \underline{x_{106}}, \underline{x_{133}} $ $ x_{228}^{13} $ $ x_{228}^{12}, \overline{x_{46}}, \underline{x_{155}} $
Row Feedback bit calculaton because of (15) Column 10 Feedback bit calculaton because of (16) Column11 Feedback bit calculaton because of (17) Column 12 Feedback bit calculaton because of (18) Column 13
Feedback bits State bits appeared on RHS of (15) Feedback bits State bits appeared on RHS of (16) Feedback bits State bits appeared on RHS of (17) Feedback bits State bits appeared on RHS of (18)
0 $ x_{206}^{10} $ $ x_{206}, x_{5}, x_{80} $ $ x_{202}^{11} $ $ x_{202}, x_{8}, $ $ x_{103} $ $ x_{198}^{12} $ $ x_{198}, \overline{x_{29}}, \overline{x_{52}}, \overline{x_{72}}, \underline{x_{99}} $ $ x_{194}^{13} $ $ x_{194}, x_{12}, x_{121} $
1 $ x_{207}^{10} $ $ x_{207}, x_{6}, x_{81} $ $ x_{203}^{11} $ $ x_{203}, x_{9}, $ $ x_{104} $ $ x_{199}^{12} $ $ x_{199}, \overline{x_{30}}, \overline{x_{53}}, \overline{x_{73}}, \underline{x_{100}} $ $ x_{195}^{13} $ $ x_{195}, x_{13}, x_{122} $
2 $ x_{208}^{10} $ $ x_{208}, x_{7}, x_{82} $ $ x_{204}^{11} $ $ x_{204}, x_{10}, $ $ x_{105} $ $ x_{200}^{12} $ $ x_{200}, \overline{x_{31}}, \overline{x_{54}}, \overline{x_{74}}, \underline{x_{101}} $ $ x_{196}^{13} $ $ x_{196}, x_{14}, x_{123} $
3 $ x_{209}^{10} $ $ x_{209}, x_{8}, x_{83} $ $ x_{205}^{11} $ $ x_{205}, x_{11}, $ $ x_{106} $ $ x_{201}^{12} $ $ x_{201}, \overline{x_{32}}, \overline{x_{55}}, \overline{x_{75}}, \underline{x_{102}} $ $ x_{197}^{13} $ $ x_{197}, x_{15}, x_{124} $
4 $ x_{210}^{10} $ $ x_{210}^9, x_{9}, x_{84} $ $ x_{206}^{11} $ $ x_{206}^{10}, x_{12}, $ $ x_{107} $ $ x_{202}^{12} $ $ x_{202}^{11}, \overline{x_{33}}, \overline{x_{56}}, \overline{x_{76}}, \underline{x_{103}} $ $ x_{198}^{13} $ $ x_{198}^{12}, x_{16}, x_{125} $
5 $ x_{211}^{10} $ $ x_{211}^9, x_{10}, x_{85} $ $ x_{207}^{11} $ $ x_{207}^{10}, x_{13}, $ $ x_{108} $ $ x_{203}^{12} $ $ x_{203}^{11}, \overline{x_{34}}, \overline{x_{57}}, \underline{x_{77}}, \underline{x_{104}} $ $ x_{199}^{13} $ $ x_{199}^{12}, x_{17}, x_{126} $
6 $ x_{212}^{10} $ $ x_{212}^9, x_{11}, x_{86} $ $ x_{208}^{11} $ $ x_{208}^{10}, x_{14}, $ $ x_{109} $ $ x_{204}^{12} $ $ x_{204}^{11}, \overline{x_{35}}, \overline{x_{58}}, \underline{x_{78}}, \underline{x_{105}} $ $ x_{200}^{13} $ $ x_{200}^{12}, x_{18}, x_{127} $
7 $ x_{213}^{10} $ $ x_{213}^9, x_{12}, x_{87} $ $ x_{209}^{11} $ $ x_{209}^{10}, x_{15}, $ $ x_{110} $ $ x_{205}^{12} $ $ x_{205}^{11}, \overline{x_{36}}, \overline{x_{59}}, \underline{x_{79}}, \underline{x_{106}} $ $ x_{201}^{13} $ $ x_{201}^{12}, x_{19}, x_{128} $
8 $ x_{214}^{10} $ $ x_{214}^9, x_{13}, x_{88} $ $ x_{210}^{11} $ $ x_{210}^{10}, x_{16}, $ $ x_{111} $ $ x_{206}^{12} $ $ x_{206}^{11}, \underline{x_{37}}, \overline{x_{60}}, \underline{x_{80}}, \underline{x_{107}} $ $ x_{202}^{13} $ $ x_{202}^{12}, x_{20}, x_{129} $
9 $ x_{215}^{10} $ $ x_{215}^9, x_{14}, x_{89} $ $ x_{211}^{11} $ $ x_{211}^{10}, x_{17}, $ $ x_{112} $ $ x_{207}^{12} $ $ x_{207}^{11}, \underline{x_{38}}, \overline{x_{61}}, \underline{x_{81}}, \underline{x_{108}} $ $ x_{203}^{13} $ $ x_{203}^{12}, x_{21}, x_{130} $
10 $ x_{216}^{10} $ $ x_{216}^9, x_{15}, x_{90} $ $ x_{212}^{11} $ $ x_{212}^{10}, x_{18}, $ $ x_{113} $ $ x_{208}^{12} $ $ x_{208}^{11}, \underline{x_{39}}, \overline{x_{62}}, \underline{x_{82}}, \underline{x_{109}} $ $ x_{204}^{13} $ $ x_{204}^{12}, x_{22}, x_{131} $
11 $ x_{217}^{10} $ $ x_{217}^9, x_{16}, x_{91} $ $ x_{213}^{11} $ $ x_{213}^{10}, x_{19}, $ $ x_{114} $ $ x_{209}^{12} $ $ x_{209}^{11}, \underline{x_{40}}, \overline{x_{63}}, \underline{x_{83}}, \underline{x_{110}} $ $ x_{205}^{13} $ $ x_{205}^{12}, x_{23}, x_{132} $
12 $ x_{218}^{10} $ $ x_{218}^9, x_{17}, x_{92} $ $ x_{214}^{11} $ $ x_{214}^{10}, x_{20}, $ $ x_{115} $ $ x_{210}^{12} $ $ x_{210}^{11}, \underline{x_{41}}, \overline{x_{64}}, \underline{x_{84}}, \underline{x_{111}} $ $ x_{206}^{13} $ $ x_{206}^{12}, x_{24}, x_{133} $
13 $ x_{219}^{10} $ $ x_{219}^9, x_{18}, x_{93} $ $ x_{215}^{11} $ $ x_{215}^{10}, x_{21}, $ $ x_{116} $ $ x_{211}^{12} $ $ x_{211}^{11}, \underline{x_{42}}, \overline{x_{65}}, \underline{x_{85}}, \underline{x_{112}} $ $ x_{207}^{13} $ $ x_{207}^{12}, x_{25}, x_{134} $
14 $ x_{220}^{10} $ $ x_{220}^9, x_{19}, x_{94} $ $ x_{216}^{11} $ $ x_{216}^{10}, x_{22}, $ $ x_{117} $ $ x_{212}^{12} $ $ x_{212}^{11}, \underline{x_{43}}, \overline{x_{66}}, \underline{x_{86}}, \underline{x_{113}} $ $ x_{208}^{13} $ $ x_{208}^{12}, x_{26}, x_{135} $
15 $ x_{221}^{10} $ $ x_{221}^9, x_{20}, x_{95} $ $ x_{217}^{11} $ $ x_{217}^{10}, x_{23}, $ $ x_{118} $ $ x_{213}^{12} $ $ x_{213}^{11}, \underline{x_{44}}, \overline{x_{67}}, \underline{x_{87}}, \underline{x_{114}} $ $ x_{209}^{13} $ $ x_{209}^{12}, x_{27}, x_{136} $
16 $ x_{222}^{10} $ $ x_{222}^9, x_{21}, x_{96} $ $ x_{218}^{11} $ $ x_{218}^{10}, x_{24}, $ $ x_{119} $ $ x_{214}^{12} $ $ x_{214}^{11}, \underline{x_{45}}, \overline{x_{68}}, \underline{x_{88}}, \underline{x_{115}} $ $ x_{210}^{13} $ $ x_{210}^{12}, x_{28}, x_{137} $
17 $ x_{223}^{10} $ $ x_{223}^9, x_{22}, x_{97} $ $ x_{219}^{11} $ $ x_{219}^{10}, x_{25}, $ $ x_{120} $ $ x_{215}^{12} $ $ x_{215}^{11}, \overline{x_{46}}, \overline{x_{69}}, \underline{x_{89}}, \underline{x_{116}} $ $ x_{211}^{13} $ $ x_{211}^{12}, \overline{x_{29}}, \underline{x_{138}} $
18 $ x_{224}^{10} $ $ x_{224}^9, x_{23}, x_{98} $ $ x_{220}^{11} $ $ x_{220}^{10}, x_{26}, $ $ x_{121} $ $ x_{216}^{12} $ $ x_{216}^{11}, \overline{x_{47}}, \overline{x_{70}}, \underline{x_{90}}, \underline{x_{117}} $ $ x_{212}^{13} $ $ x_{212}^{12}, \overline{x_{30}}, \underline{x_{139}} $
19 $ x_{225}^{10} $ $ x_{225}^9, x_{24}, x_{99} $ $ x_{221}^{11} $ $ x_{221}^{10}, x_{27}, $ $ x_{122} $ $ x_{217}^{12} $ $ x_{217}^{11}, \overline{x_{48}}, \overline{x_{71}}, \underline{x_{91}}, \underline{x_{118}} $ $ x_{213}^{13} $ $ x_{213}^{12}, \overline{x_{31}}, \underline{x_{140}} $
20 $ x_{226}^{10} $ $ x_{226}^9, x_{25}, x_{100} $ $ x_{222}^{11} $ $ x_{222}^{10}, x_{28}, $ $ x_{123} $ $ x_{218}^{12} $ $ x_{218}^{11}, \overline{x_{49}}, \overline{x_{72}}, \underline{x_{92}}, \underline{x_{119}} $ $ x_{214}^{13} $ $ x_{214}^{12}, \overline{x_{32}}, \underline{x_{141}} $
21 $ x_{227}^{10} $ $ x_{227}^9, x_{26}, x_{101} $ $ x_{223}^{11} $ $ x_{223}^{10}, \overline{x_{29}}, $ $ \underline{x_{124}} $ $ x_{219}^{12} $ $ x_{219}^{11}, \overline{x_{50}}, \overline{x_{73}}, \underline{x_{93}}, \underline{x_{120}} $ $ x_{215}^{13} $ $ x_{215}^{12}, \overline{x_{33}}, \underline{x_{142}} $
22 $ x_{228}^{10} $ $ x_{228}^9, x_{27}, x_{102} $ $ x_{224}^{11} $ $ x_{224}^{10}, \overline{x_{30}}, $ $ \underline{x_{125}} $ $ x_{220}^{12} $ $ x_{220}^{11}, \overline{x_{51}}, \overline{x_{74}}, \underline{x_{94}}, \underline{x_{121}} $ $ x_{216}^{13} $ $ x_{216}^{12}, \overline{x_{34}}, \underline{x_{143}} $
23 $ x_{229}^{10} $ $ x_{229}^9, x_{28}, x_{103} $ $ x_{225}^{11} $ $ x_{225}^{10}, \overline{x_{31}}, $ $ \underline{x_{126}} $ $ x_{221}^{12} $ $ x_{221}^{11}, \overline{x_{52}}, \overline{x_{75}}, \underline{x_{95}}, \underline{x_{122}} $ $ x_{217}^{13} $ $ x_{217}^{12}, \overline{x_{35}}, \underline{x_{144}} $
24 $ x_{230}^{10} $ $ x_{230}^9, \overline{x_{29}}, \underline{x_{104}} $ $ x_{226}^{11} $ $ x_{226}^{10}, \overline{x_{32}}, $ $ \underline{x_{127}} $ $ x_{222}^{12} $ $ x_{222}^{11}, \overline{x_{53}}, \overline{x_{76}}, \underline{x_{96}}, \underline{x_{123}} $ $ x_{218}^{13} $ $ x_{218}^{12}, \overline{x_{36}}, \underline{x_{145}} $
25 $ x_{231}^{10} $ $ x_{231}^9, \overline{x_{30}}, \underline{x_{105}} $ $ x_{227}^{11} $ $ x_{227}^{10}, \overline{x_{33}}, $ $ \underline{x_{128}} $ $ x_{223}^{12} $ $ x_{223}^{11}, \overline{x_{54}}, \underline{x_{77}}, \underline{x_{97}}, \underline{x_{124}} $ $ x_{219}^{13} $ $ x_{219}^{12}, x_{37}, x_{146} $
26 $ x_{232}^{10} $ $ x_{232}^9, \overline{x_{31}}, \underline{x_{106}} $ $ x_{228}^{11} $ $ x_{228}^{10}, \overline{x_{34}}, $ $ \underline{x_{129}} $ $ x_{224}^{12} $ $ x_{224}^{11}, \overline{x_{55}}, \underline{x_{78}}, \underline{x_{98}}, \underline{x_{125}} $ $ x_{220}^{13} $ $ x_{220}^{12}, x_{38}, x_{147} $
27 $ x_{233}^{10} $ $ x_{233}^9, \overline{x_{32}}, \underline{x_{107}} $ $ x_{229}^{11} $ $ x_{229}^{10}, \overline{x_{35}}, $ $ \underline{x_{130}} $ $ x_{225}^{12} $ $ x_{225}^{11}, \overline{x_{56}}, \underline{x_{79}}, \underline{x_{99}}, \underline{x_{126}} $ $ x_{221}^{13} $ $ x_{221}^{12}, x_{39}, x_{148} $
28 $ x_{234}^{10} $ $ x_{234}^9, \overline{x_{33}}, \underline{x_{108}} $ $ x_{230}^{11} $ $ x_{230}^{10}, \overline{x_{36}}, $ $ \underline{x_{131}} $ $ x_{226}^{12} $ $ x_{226}^{11}, \overline{x_{57}}, \underline{x_{80}}, \underline{x_{100}}, \underline{x_{127}} $ $ x_{222}^{13} $ $ x_{222}^{12}, x_{40}, x_{149} $
29 $ x_{235}^{10} $ $ x_{235}^9, \overline{x_{34}}, \underline{x_{109}} $ $ x_{231}^{11} $ $ x_{231}^{10}, x_{37}, $ $ x_{132} $ $ x_{227}^{12} $ $ x_{227}^{11}, \overline{x_{58}}, \underline{x_{81}}, \underline{x_{101}}, \underline{x_{128}} $ $ x_{223}^{13} $ $ x_{223}^{12}, x_{41}, x_{150} $
30 $ x_{236}^{10} $ $ x_{236}^9, \overline{x_{35}}, \underline{x_{110}} $ $ x_{232}^{11} $ $ x_{232}^{10}, x_{38}, $ $ x_{133} $ $ x_{228}^{12} $ $ x_{228}^{11}, \overline{x_{59}}, \underline{x_{82}}, \underline{x_{102}}, \underline{x_{129}} $ $ x_{224}^{13} $ $ x_{224}^{12}, x_{42}, x_{151} $
31 $ x_{237}^{10} $ $ x_{237}^9, \overline{x_{36}}, \underline{x_{111}} $ $ x_{233}^{11} $ $ x_{233}^{10}, x_{39}, $ $ x_{134} $ $ x_{229}^{12} $ $ x_{229}^{11}, \overline{x_{60}}, \underline{x_{83}}, \underline{x_{103}}, \underline{x_{130}} $ $ x_{225}^{13} $ $ x_{225}^{12}, x_{43}, x_{152} $
32 $ x_{238}^{10} $ $ x_{238}^9, x_{37}, x_{112} $ $ x_{234}^{11} $ $ x_{234}^{10}, x_{40}, $ $ x_{135} $ $ x_{230}^{12} $ $ x_{230}^{11}, \overline{x_{61}}, \underline{x_{84}}, \underline{x_{104}}, \underline{x_{131}} $ $ x_{226}^{13} $ $ x_{226}^{12}, x_{44}, x_{153} $
33 $ x_{239}^{10} $ $ x_{239}^9, x_{38}, x_{113} $ $ x_{235}^{11} $ $ x_{235}^{10}, x_{41}, $ $ x_{136} $ $ x_{231}^{12} $ $ x_{231}^{11}, \overline{x_{62}}, \underline{x_{85}}, \underline{x_{105}}, \underline{x_{132}} $ $ x_{227}^{13} $ $ x_{227}^{12}, x_{45}, x_{154} $
34 $ x_{240}^{10} $ $ x_{240}^9, x_{39}, x_{114} $ $ x_{236}^{11} $ $ x_{236}^{10}, x_{42}, $ $ x_{137} $ $ x_{232}^{12} $ $ x_{232}^{11}, \overline{x_{63}}, \underline{x_{86}}, \underline{x_{106}}, \underline{x_{133}} $ $ x_{228}^{13} $ $ x_{228}^{12}, \overline{x_{46}}, \underline{x_{155}} $
Table 4.  Equations used for recovery of 35 bits of the internal state
Step/Row Equations used for recovery
0 $\begin{aligned}x_{137}& = z_ 0 \oplus x_{ 80} \oplus x_{99} \oplus x_{227} \oplus x_{222} \oplus x_{187} \oplus x_{243}x_{217} \oplus x_{247}x_{231} \oplus x_{213}x_{235} \\ & \quad \oplus x_{255}x_{251} \oplus x_{181}x_{239} \oplus x_{174}x_{44}\oplus x_{164} \overline{x_{29}} \oplus x_{255}x_{247}x_{243}x_{213}x_{181}x_{174}\end{aligned}$
1 $\begin{aligned}x_{ 138}& = z_ 1 \oplus x_{ 81} \oplus x_{ 100} \oplus x_{ 228} \oplus x_{ 223} \oplus x_{188} \oplus x_{ 244}^3x_{218}^7 \oplus x_{ 248}^2x_{ 232}^6 \oplus x_{214}^8x_{236}^5 \\ & \quad\oplus x_{ 256}^0x_{252}^1 \oplus x_{182}x_{240}^4 \oplus x_{175}x_{ 45}\oplus x_{165} \overline{x_{30}} \oplus x_{256}^0x_{248}^2x_{244}^3x_{214}^8x_{182}x_{175}\end{aligned}$
2 $\begin{aligned}x_{ 139}& = z_ 2 \oplus x_{ 82} \oplus x_{ 101} \oplus x_{ 229} \oplus x_{ 224} \oplus x_{189} \oplus x_{ 245}^3x_{219}^7 \oplus x_{ 249}^2x_{ 233}^6 \oplus x_{215}^8x_{237}^5\\ & \quad\oplus x_{ 257}^0x_{253}^1 \oplus x_{183}x_{241}^4 \oplus x_{176}\overline{x_{ 46}}\oplus x_{166} \overline{x_{31}} \oplus x_{257}^0x_{249}^2x_{245}^3x_{215}^8x_{183}x_{176}\end{aligned}$
3 $\begin{aligned}x_{ 140}& = z_ 3 \oplus x_{ 83} \oplus x_{ 102} \oplus x_{ 230} \oplus x_{ 225} \oplus x_{190} \oplus x_{ 246}^3x_{220}^7 \oplus x_{ 250}^2x_{ 234}^6 \oplus x_{216}^8x_{238}^5\\ & \quad\oplus x_{ 258}^0x_{254}^1 \oplus x_{184}x_{242}^4 \oplus x_{177}\overline{x_{ 47}}\oplus x_{167} \overline{x_{32}} \oplus x_{258}^0x_{250}^2x_{246}^3x_{216}^8x_{184}x_{177}\end{aligned}$
4 $\begin{aligned}x_{ 141}& = z_ 4 \oplus x_{ 84} \oplus x_{ 103} \oplus x_{ 231} \oplus x_{ 226} \oplus x_{191} \oplus x_{ 247}^3x_{221}^7 \oplus x_{ 251}^2x_{ 235}^6 \oplus x_{217}^8x_{239}^5\\ & \quad\oplus x_{ 259}^0x_{255}^1 \oplus x_{185}x_{243}^4 \oplus x_{178}\overline{x_{ 48}}\oplus x_{168} \overline{x_{33}} \oplus x_{259}^0x_{251}^2x_{247}^3x_{217}^8x_{185}x_{178}\end{aligned}$
5 $\begin{aligned}x_{ 142}& = z_ 5 \oplus x_{ 85} \oplus x_{ 104} \oplus x_{ 232}^6 \oplus x_{ 227} \oplus x_{192} \oplus x_{ 248}^3x_{222}^7 \oplus x_{ 252}^2x_{ 236}^6 \oplus x_{218}^8x_{240}^5\\ & \quad \oplus x_{ 260}^0x_{256}^1 \oplus x_{186}x_{244}^4 \oplus x_{179}\overline{x_{ 49}}\oplus x_{169}\overline{x_{34}} \oplus x_{260}^0x_{252}^2x_{248}^3x_{218}^8x_{186}x_{179}\end{aligned}$
6 $\begin{aligned}x_{ 143}& = z_ 6 \oplus x_{ 86} \oplus x_{ 105} \oplus x_{ 233}^6 \oplus x_{ 228} \oplus x_{193} \oplus x_{ 249}^3x_{223}^7 \oplus x_{ 253}^2x_{ 237}^6 \oplus x_{219}^8x_{241}^5\\ & \quad \oplus x_{ 261}^0x_{257}^1 \oplus x_{187}x_{245}^4 \oplus x_{180}\overline{x_{ 50}}\oplus x_{170}\overline{x_{35}} \oplus x_{261}^0x_{253}^2x_{249}^3x_{219}^8x_{187}x_{180}\end{aligned}$
7 $\begin{aligned}x_{ 144}& = z_ 7 \oplus x_{ 87} \oplus x_{ 106} \oplus x_{ 234}^6 \oplus x_{ 229} \oplus x_{194}^{13} \oplus x_{ 250}^3x_{224}^7 \oplus x_{ 254}^2x_{ 238}^6 \oplus x_{220}^8x_{242}^5\\ & \quad \oplus x_{ 262}^0x_{258}^1 \oplus x_{188}x_{246}^4 \oplus x_{181}\overline{x_{ 51}}\oplus x_{171}\overline{x_{36}} \oplus x_{262}^0x_{254}^2x_{250}^3x_{220}^8x_{188}x_{181}\end{aligned}$
8 $\begin{aligned}x_{ 145}& = z_ 8 \oplus x_{ 88} \oplus x_{ 107} \oplus x_{ 235}^6 \oplus x_{ 230} \oplus x_{195}^{13} \oplus x_{ 251}^3x_{225}^7 \oplus x_{ 255}^2x_{ 239}^6 \oplus x_{221}^8x_{243}^5\\ & \quad\oplus x_{ 263}^0x_{259}^1 \oplus x_{189}x_{247}^4 \oplus x_{182}\overline{x_{ 52}}\oplus x_{172}x_{37} \oplus x_{263}^0x_{255}^2x_{251}^3x_{221}^8x_{189}x_{182}\end{aligned}$
9 $\begin{aligned}x_{ 146}& = z_ 9 \oplus x_{ 89} \oplus x_{ 108} \oplus x_{ 236}^6 \oplus x_{ 231} \oplus x_{196}^{13} \oplus x_{ 252}^3x_{226}^7 \oplus x_{ 256}^2x_{ 240}^6 \oplus x_{222}^8x_{244}^5\\ & \quad \oplus x_{ 264}^0x_{260}^1 \oplus x_{190}x_{248}^4 \oplus x_{183}\overline{x_{ 53}}\oplus x_{173}x_{38} \oplus x_{264}^0x_{256}^2x_{252}^3x_{222}^8x_{190}x_{183}\end{aligned}$
10 $\begin{aligned}x_{ 147}& = z_ {10} \oplus x_{ 90} \oplus x_{ 109} \oplus x_{ 237}^6 \oplus x_{ 232}^6 \oplus x_{197}^{13} \oplus x_{ 253}^3x_{227}^7 \oplus x_{ 257}^2x_{ 241}^6 \oplus x_{223}^8x_{245}^5\\ & \quad\oplus x_{ 265}^0x_{261}^1 \oplus x_{191}x_{249}^4 \oplus x_{184}\overline{x_{ 54}}\oplus x_{174}x_{39} \oplus x_{265}^0x_{257}^2x_{253}^3x_{223}^8x_{191}x_{184}\end{aligned}$
11 $\begin{aligned}x_{ 148}& = z_ {11} \oplus x_{ 91} \oplus x_{ 110} \oplus x_{ 238}^6 \oplus x_{ 233}^6 \oplus x_{198}^{13} \oplus x_{ 254}^3x_{228}^7 \oplus x_{ 258}^2x_{ 242}^6 \oplus x_{224}^8x_{246}^5\\ & \quad \oplus x_{ 266}^0x_{262}^1 \oplus x_{192}x_{250}^4 \oplus x_{185}\overline{x_{ 55}}\oplus x_{175}x_{40} \oplus x_{266}^0x_{258}^2x_{254}^3x_{224}^8x_{192}x_{185}\end{aligned}$
12 $\begin{aligned}x_{ 149}& = z_ {12} \oplus x_{ 92} \oplus x_{ 111} \oplus x_{ 239}^6 \oplus x_{ 234}^6 \oplus x_{199}^{13} \oplus x_{ 255}^3x_{229}^7 \oplus x_{ 259}^2x_{ 243}^6 \oplus x_{225}^8x_{247}^5\\ & \quad\oplus x_{ 267}^0x_{263}^1 \oplus x_{193}x_{251}^4 \oplus x_{186}\overline{x_{ 56}}\oplus x_{176}x_{41} \oplus x_{267}^0x_{259}^2x_{255}^3x_{225}^8x_{193}x_{186}\end{aligned}$
13 $\begin{aligned}x_{ 150}& = z_ {13} \oplus x_{ 93} \oplus x_{ 112} \oplus x_{ 240}^6 \oplus x_{ 235}^6 \oplus x_{200}^{13} \oplus x_{ 256}^3x_{230}^7 \oplus x_{ 260}^2x_{ 244}^6 \oplus x_{226}^8x_{248}^5\\ & \quad\oplus x_{ 268}^0x_{264}^1 \oplus x_{194}^{13}x_{252}^4 \oplus x_{187}\overline{x_{ 57}}\oplus x_{177}x_{42} \oplus x_{268}^0x_{260}^2x_{256}^3x_{226}^8x_{194}^{13}x_{187}\end{aligned}$
14 $\begin{aligned}x_{ 151}& = z_ {14} \oplus x_{ 94} \oplus x_{ 113} \oplus x_{ 241}^6 \oplus x_{ 236}^6 \oplus x_{201}^{13} \oplus x_{ 257}^3x_{231}^7 \oplus x_{ 261}^2x_{ 245}^6 \oplus x_{227}^8x_{249}^5\\ & \quad\oplus x_{ 269}^0x_{265}^1 \oplus x_{195}^{13}x_{253}^4 \oplus x_{188}\overline{x_{ 58}}\oplus x_{178}x_{43} \oplus x_{269}^0x_{261}^2x_{257}^3x_{227}^8x_{195}^{13}x_{188}\end{aligned}$
15 $\begin{aligned}x_{ 152}& = z_ {15} \oplus x_{ 95} \oplus x_{ 114} \oplus x_{ 242}^6 \oplus x_{ 237}^6 \oplus x_{202}^{13} \oplus x_{ 258}^3x_{232}^7 \oplus x_{ 262}^2x_{ 246}^6 \oplus x_{228}^8x_{250}^5\\ & \quad\oplus x_{ 270}^0x_{266}^1 \oplus x_{196}^{13}x_{254}^4 \oplus x_{189}\overline{x_{59}}\oplus x_{179}x_{44} \oplus x_{270}^0x_{262}^2x_{258}^3x_{228}^8x_{196}^{13}x_{189}\end{aligned}$
16 $\begin{aligned}x_{ 153}& = z_ {16} \oplus x_{ 96} \oplus x_{ 115} \oplus x_{ 243}^6 \oplus x_{ 238}^6 \oplus x_{203}^{13} \oplus x_{ 259}^3x_{233}^7 \oplus x_{ 263}^2x_{ 247}^6 \oplus x_{229}^8x_{251}^5\\ & \quad \oplus x_{ 271}^0x_{267}^1 \oplus x_{197}^{13}x_{255}^4 \oplus x_{190}\overline{x_{60}}\oplus x_{180}x_{45} \oplus x_{271}^0x_{263}^2x_{259}^3x_{229}^8x_{197}^{13}x_{190}\end{aligned}$
17 $\begin{aligned}x_{ 154}& = z_ {17} \oplus x_{ 97} \oplus x_{ 116} \oplus x_{ 244}^6 \oplus x_{ 239}^6 \oplus x_{204}^{13} \oplus x_{ 260}^3x_{234}^7 \oplus x_{ 264}^2x_{ 248}^6 \oplus x_{230}^8x_{252}^5\\ & \quad \oplus x_{ 272}^0x_{268}^1 \oplus x_{198}^{13}x_{256}^4 \oplus x_{191}\overline{x_{61}}\oplus x_{181}\overline{x_{46}} \oplus x_{272}^0x_{264}^2x_{260}^3x_{230}^8x_{198}^{13}x_{191}\end{aligned}$
18 $\begin{aligned}x_{ 155}& = z_ {18} \oplus x_{ 98} \oplus x_{ 117} \oplus x_{ 245}^6 \oplus x_{ 240}^6 \oplus x_{205}^{13} \oplus x_{ 261}^3x_{235}^7 \oplus x_{ 265}^2x_{ 249}^6 \oplus x_{231}^8x_{253}^5\\ & \quad\oplus x_{ 273}^0x_{269}^1 \oplus x_{199}^{13}x_{257}^4 \oplus x_{192}\overline{x_{62}}\oplus x_{182}\overline{x_{47}} \oplus x_{273}^0x_{265}^2x_{261}^3x_{231}^8x_{199}^{13}x_{192}\end{aligned}$
19 $\begin{aligned}x_{ 156}& = z_ {19} \oplus x_{ 99} \oplus x_{ 118} \oplus x_{ 246}^6 \oplus x_{ 241}^6 \oplus x_{206}^{13} \oplus x_{ 262}^3x_{236}^7 \oplus x_{ 266}^2x_{ 250}^6 \oplus x_{232}^8x_{254}^5\\ & \quad \oplus x_{ 274}^0x_{270}^1 \oplus x_{200}^{13}x_{258}^4 \oplus x_{193}\overline{x_{63}}\oplus x_{183}\overline{x_{48}} \oplus x_{274}^0x_{266}^2x_{262}^3x_{232}^8x_{200}^{13}x_{193}\end{aligned}$
20 $\begin{aligned}x_{ 157}& = z_ {20} \oplus x_{100} \oplus x_{ 119} \oplus x_{ 247}^6 \oplus x_{ 242}^6 \oplus x_{207}^{13} \oplus x_{ 263}^3x_{237}^7 \oplus x_{ 267}^2x_{ 251}^6 \oplus x_{233}^8x_{255}^5\\ & \quad \oplus x_{ 275}^0x_{271}^1 \oplus x_{201}^{13}x_{259}^4 \oplus x_{194}^{13}\overline{x_{64}}\oplus x_{184}\overline{x_{49}} \oplus x_{275}^0x_{267}^2x_{263}^3x_{233}^8x_{201}^{13}x_{194}^{13}\end{aligned}$
21 $\begin{aligned}x_{ 158}& = z_ {21} \oplus x_{101} \oplus x_{ 120} \oplus x_{ 248}^6 \oplus x_{ 243}^6 \oplus x_{208}^{13} \oplus x_{ 264}^3x_{238}^7 \oplus x_{ 268}^2x_{ 252}^6 \oplus x_{234}^8x_{256}^5\\ & \quad \oplus x_{ 276}^0x_{272}^1 \oplus x_{202}^{13}x_{260}^4 \oplus x_{195}^{13}\overline{x_{65}}\oplus x_{185}\overline{x_{50}} \oplus x_{276}^0x_{268}^2x_{264}^3x_{234}^8x_{202}^{13}x_{195}^{13}\end{aligned}$
22 $\begin{aligned}x_{ 159}& = z_ {22} \oplus x_{102} \oplus x_{ 121} \oplus x_{ 249}^6 \oplus x_{ 244}^6 \oplus x_{209}^{13} \oplus x_{ 265}^3x_{239}^7 \oplus x_{ 269}^2x_{ 253}^6 \oplus x_{235}^8x_{257}^5\\ & \quad \oplus x_{ 277}^0x_{273}^1 \oplus x_{203}^{13}x_{261}^4 \oplus x_{196}^{13}\overline{x_{66}}\oplus x_{186}\overline{x_{51}} \oplus x_{277}^0x_{269}^2x_{265}^3x_{235}^8x_{203}^{13}x_{196}^{13}\end{aligned}$
23 $\begin{aligned}x_{ 160}& = z_ {23} \oplus x_{103} \oplus x_{ 122} \oplus x_{ 250}^6 \oplus x_{ 245}^6 \oplus x_{210}^{13} \oplus x_{ 266}^3x_{240}^7 \oplus x_{ 270}^2x_{ 254}^6 \oplus x_{236}^8x_{258}^5\\ & \quad \oplus x_{ 278}^0x_{274}^1 \oplus x_{204}^{13}x_{262}^4 \oplus x_{197}^{13}\overline{x_{67}}\oplus x_{187}\overline{x_{52}} \oplus x_{278}^0x_{270}^2x_{266}^3x_{236}^8x_{204}^{13}x_{197}^{13}\end{aligned}$
24 $\begin{aligned}x_{ 161}& = z_ {24} \oplus x_{104} \oplus x_{ 123} \oplus x_{ 251}^6 \oplus x_{ 246}^6 \oplus x_{211}^{13} \oplus x_{ 267}^3x_{241}^7 \oplus x_{ 271}^2x_{ 255}^6 \oplus x_{237}^8x_{259}^5\\ & \quad \oplus x_{ 279}^0x_{275}^1 \oplus x_{205}^{13}x_{263}^4 \oplus x_{198}^{13}\overline{x_{68}}\oplus x_{188}\overline{x_{53}} \oplus x_{279}^0x_{271}^2x_{267}^3x_{237}^8x_{205}^{13}x_{198}^{13} \end{aligned}$
25 $\begin{aligned}x_{ 162}& = z_ {25} \oplus x_{105} \oplus x_{ 124} \oplus x_{ 252}^6 \oplus x_{ 247}^6 \oplus x_{212}^{13} \oplus x_{ 268}^3x_{242}^7 \oplus x_{ 272}^2x_{ 256}^6 \oplus x_{238}^8x_{260}^5\\ & \quad\oplus x_{ 280}^0x_{276}^1 \oplus x_{206}^{13}x_{264}^4 \oplus x_{199}^{13}\overline{x_{69}}\oplus x_{189}\overline{x_{54}} \oplus x_{280}^0x_{272}^2x_{268}^3x_{238}^8x_{206}^{13}x_{199}^{13} \end{aligned}$
26 $\begin{aligned}x_{ 163}& = z_ {26} \oplus x_{106} \oplus x_{ 125} \oplus x_{ 253}^6 \oplus x_{ 248}^6 \oplus x_{213}^{13} \oplus x_{ 269}^3x_{243}^7 \oplus x_{ 273}^2x_{ 257}^6 \oplus x_{239}^8x_{261}^5\\ & \quad\oplus x_{ 281}^0x_{277}^1 \oplus x_{207}^{13}x_{265}^4 \oplus x_{200}^{13}\overline{x_{70}}\oplus x_{190}\overline{x_{55}} \oplus x_{281}^0x_{273}^2x_{269}^3x_{239}^8x_{207}^{13}x_{200}^{13}\end{aligned}$
27 $\begin{aligned}x_{ 164}& = z_ {27} \oplus x_{107} \oplus x_{ 126} \oplus x_{ 254}^6 \oplus x_{ 249}^6 \oplus x_{214}^{13} \oplus x_{ 270}^3x_{244}^7 \oplus x_{ 274}^2x_{ 258}^6 \oplus x_{240}^8x_{262}^5\\ & \quad\oplus x_{ 282}^0x_{278}^1 \oplus x_{208}^{13}x_{266}^4 \oplus x_{201}^{13}\overline{x_{71}}\oplus x_{191}\overline{x_{56}} \oplus x_{282}^0x_{274}^2x_{270}^3x_{240}^8x_{208}^{13}x_{201}^{13}\end{aligned}$
28 $\begin{aligned}x_{ 165}& = z_ {28} \oplus x_{108} \oplus x_{ 127} \oplus x_{ 255}^6 \oplus x_{ 250}^6 \oplus x_{215}^{13} \oplus x_{ 271}^3x_{245}^7 \oplus x_{ 275}^2x_{ 259}^6 \oplus x_{241}^8x_{263}^5\\ & \quad\oplus x_{ 283}^0x_{279}^1 \oplus x_{209}^{13}x_{267}^4 \oplus x_{202}^{13}\overline{x_{72}}\oplus x_{192}\overline{x_{57}} \oplus x_{283}^0x_{275}^2x_{271}^3x_{241}^8x_{209}^{13}x_{202}^{13}\end{aligned}$
29 $\begin{aligned}x_{ 166}& = z_ {29} \oplus x_{109} \oplus x_{ 128} \oplus x_{ 256}^6 \oplus x_{ 251}^6 \oplus x_{216}^{13} \oplus x_{ 272}^3x_{246}^7 \oplus x_{ 276}^2x_{ 260}^6 \oplus x_{242}^8x_{264}^5\\ & \quad\oplus x_{ 284}^0x_{280}^1 \oplus x_{210}^{13}x_{268}^4 \oplus x_{203}^{13}\overline{x_{73}}\oplus x_{193}\overline{x_{58}} \oplus x_{284}^0x_{276}^2x_{272}^3x_{242}^8x_{210}^{13}x_{203}^{13}\end{aligned}$
30 $\begin{aligned}x_{ 167}& = z_ {30} \oplus x_{110} \oplus x_{ 129} \oplus x_{ 257}^6 \oplus x_{ 252}^6 \oplus x_{217}^{13} \oplus x_{ 273}^3x_{247}^7 \oplus x_{ 277}^2x_{ 261}^6 \oplus x_{243}^8x_{265}^5\\ & \quad\oplus x_{ 285}^0x_{281}^1 \oplus x_{211}^{13}x_{269}^4 \oplus x_{204}^{13}\overline{x_{74}}\oplus x_{194}^{13}\overline{x_{59}} \oplus x_{285}^0x_{277}^2x_{273}^3x_{243}^8x_{211}^{13}x_{204}^{13}\end{aligned}$
31 $\begin{aligned}x_{ 168}& = z_ {31} \oplus x_{111} \oplus x_{ 130} \oplus x_{ 258}^6 \oplus x_{ 253}^6 \oplus x_{218}^{13} \oplus x_{ 274}^3x_{248}^7 \oplus x_{ 278}^2x_{ 262}^6 \oplus x_{244}^8x_{266}^5\\ & \quad\oplus x_{ 286}^0x_{282}^1 \oplus x_{212}^{13}x_{270}^4 \oplus x_{205}^{13}\overline{x_{75}}\oplus x_{195}^{13}\overline{x_{60}} \oplus x_{286}^0x_{278}^2x_{274}^3x_{244}^8x_{212}^{13}x_{205}^{13}\end{aligned}$
32 $\begin{aligned}x_{ 169}& = z_ {32} \oplus x_{112} \oplus x_{ 131} \oplus x_{ 259}^6 \oplus x_{ 254}^6 \oplus x_{219}^{13} \oplus x_{ 275}^3x_{249}^7 \oplus x_{ 279}^2x_{ 263}^6 \oplus x_{245}^8x_{267}^5\\ & \quad\oplus x_{ 287}^0x_{283}^1 \oplus x_{213}^{13}x_{271}^4 \oplus x_{206}^{13}\overline{x_{76}}\oplus x_{196}^{13}\overline{x_{61}} \oplus x_{287}^0x_{279}^2x_{275}^3x_{245}^8x_{213}^{13}x_{206}^{13}\end{aligned}$
33 $\begin{aligned}x_{170}& = z_ {33} \oplus x_{113} \oplus x_{ 132} \oplus x_{ 260}^6 \oplus x_{ 255}^6 \oplus x_{220}^{13} \oplus x_{ 276}^3x_{250}^7 \oplus x_{ 280}^2x_{ 264}^6 \oplus x_{246}^8x_{268}^5\\ & \quad\oplus x_{ 288}^0x_{284}^1 \oplus x_{214}^{13}x_{272}^4 \oplus x_{207}^{13}x_{77}\oplus x_{197}^{13}\overline{x_{62}} \oplus x_{288}^0x_{280}^2x_{276}^3x_{246}^8x_{214}^{13}x_{207}^{13}\end{aligned}$
34 $\begin{aligned} x_{171}& = z_ {34} \oplus x_{114} \oplus x_{ 133} \oplus x_{ 261}^6 \oplus x_{ 256}^6 \oplus x_{221}^{13} \oplus x_{ 277}^3x_{251}^7 \oplus x_{ 281}^2x_{ 265}^6 \oplus x_{247}^8x_{269}^5\\ & \quad\oplus x_{ 289}^0x_{285}^1 \oplus x_{215}^{13}x_{273}^4 \oplus x_{208}^{13}x_{78}\oplus x_{198}^{13}\overline{x_{63}} \oplus x_{289}^0x_{281}^2x_{277}^3x_{247}^8x_{215}^{13}x_{208}^{13}\end{aligned}$
Step/Row Equations used for recovery
0 $\begin{aligned}x_{137}& = z_ 0 \oplus x_{ 80} \oplus x_{99} \oplus x_{227} \oplus x_{222} \oplus x_{187} \oplus x_{243}x_{217} \oplus x_{247}x_{231} \oplus x_{213}x_{235} \\ & \quad \oplus x_{255}x_{251} \oplus x_{181}x_{239} \oplus x_{174}x_{44}\oplus x_{164} \overline{x_{29}} \oplus x_{255}x_{247}x_{243}x_{213}x_{181}x_{174}\end{aligned}$
1 $\begin{aligned}x_{ 138}& = z_ 1 \oplus x_{ 81} \oplus x_{ 100} \oplus x_{ 228} \oplus x_{ 223} \oplus x_{188} \oplus x_{ 244}^3x_{218}^7 \oplus x_{ 248}^2x_{ 232}^6 \oplus x_{214}^8x_{236}^5 \\ & \quad\oplus x_{ 256}^0x_{252}^1 \oplus x_{182}x_{240}^4 \oplus x_{175}x_{ 45}\oplus x_{165} \overline{x_{30}} \oplus x_{256}^0x_{248}^2x_{244}^3x_{214}^8x_{182}x_{175}\end{aligned}$
2 $\begin{aligned}x_{ 139}& = z_ 2 \oplus x_{ 82} \oplus x_{ 101} \oplus x_{ 229} \oplus x_{ 224} \oplus x_{189} \oplus x_{ 245}^3x_{219}^7 \oplus x_{ 249}^2x_{ 233}^6 \oplus x_{215}^8x_{237}^5\\ & \quad\oplus x_{ 257}^0x_{253}^1 \oplus x_{183}x_{241}^4 \oplus x_{176}\overline{x_{ 46}}\oplus x_{166} \overline{x_{31}} \oplus x_{257}^0x_{249}^2x_{245}^3x_{215}^8x_{183}x_{176}\end{aligned}$
3 $\begin{aligned}x_{ 140}& = z_ 3 \oplus x_{ 83} \oplus x_{ 102} \oplus x_{ 230} \oplus x_{ 225} \oplus x_{190} \oplus x_{ 246}^3x_{220}^7 \oplus x_{ 250}^2x_{ 234}^6 \oplus x_{216}^8x_{238}^5\\ & \quad\oplus x_{ 258}^0x_{254}^1 \oplus x_{184}x_{242}^4 \oplus x_{177}\overline{x_{ 47}}\oplus x_{167} \overline{x_{32}} \oplus x_{258}^0x_{250}^2x_{246}^3x_{216}^8x_{184}x_{177}\end{aligned}$
4 $\begin{aligned}x_{ 141}& = z_ 4 \oplus x_{ 84} \oplus x_{ 103} \oplus x_{ 231} \oplus x_{ 226} \oplus x_{191} \oplus x_{ 247}^3x_{221}^7 \oplus x_{ 251}^2x_{ 235}^6 \oplus x_{217}^8x_{239}^5\\ & \quad\oplus x_{ 259}^0x_{255}^1 \oplus x_{185}x_{243}^4 \oplus x_{178}\overline{x_{ 48}}\oplus x_{168} \overline{x_{33}} \oplus x_{259}^0x_{251}^2x_{247}^3x_{217}^8x_{185}x_{178}\end{aligned}$
5 $\begin{aligned}x_{ 142}& = z_ 5 \oplus x_{ 85} \oplus x_{ 104} \oplus x_{ 232}^6 \oplus x_{ 227} \oplus x_{192} \oplus x_{ 248}^3x_{222}^7 \oplus x_{ 252}^2x_{ 236}^6 \oplus x_{218}^8x_{240}^5\\ & \quad \oplus x_{ 260}^0x_{256}^1 \oplus x_{186}x_{244}^4 \oplus x_{179}\overline{x_{ 49}}\oplus x_{169}\overline{x_{34}} \oplus x_{260}^0x_{252}^2x_{248}^3x_{218}^8x_{186}x_{179}\end{aligned}$
6 $\begin{aligned}x_{ 143}& = z_ 6 \oplus x_{ 86} \oplus x_{ 105} \oplus x_{ 233}^6 \oplus x_{ 228} \oplus x_{193} \oplus x_{ 249}^3x_{223}^7 \oplus x_{ 253}^2x_{ 237}^6 \oplus x_{219}^8x_{241}^5\\ & \quad \oplus x_{ 261}^0x_{257}^1 \oplus x_{187}x_{245}^4 \oplus x_{180}\overline{x_{ 50}}\oplus x_{170}\overline{x_{35}} \oplus x_{261}^0x_{253}^2x_{249}^3x_{219}^8x_{187}x_{180}\end{aligned}$
7 $\begin{aligned}x_{ 144}& = z_ 7 \oplus x_{ 87} \oplus x_{ 106} \oplus x_{ 234}^6 \oplus x_{ 229} \oplus x_{194}^{13} \oplus x_{ 250}^3x_{224}^7 \oplus x_{ 254}^2x_{ 238}^6 \oplus x_{220}^8x_{242}^5\\ & \quad \oplus x_{ 262}^0x_{258}^1 \oplus x_{188}x_{246}^4 \oplus x_{181}\overline{x_{ 51}}\oplus x_{171}\overline{x_{36}} \oplus x_{262}^0x_{254}^2x_{250}^3x_{220}^8x_{188}x_{181}\end{aligned}$
8 $\begin{aligned}x_{ 145}& = z_ 8 \oplus x_{ 88} \oplus x_{ 107} \oplus x_{ 235}^6 \oplus x_{ 230} \oplus x_{195}^{13} \oplus x_{ 251}^3x_{225}^7 \oplus x_{ 255}^2x_{ 239}^6 \oplus x_{221}^8x_{243}^5\\ & \quad\oplus x_{ 263}^0x_{259}^1 \oplus x_{189}x_{247}^4 \oplus x_{182}\overline{x_{ 52}}\oplus x_{172}x_{37} \oplus x_{263}^0x_{255}^2x_{251}^3x_{221}^8x_{189}x_{182}\end{aligned}$
9 $\begin{aligned}x_{ 146}& = z_ 9 \oplus x_{ 89} \oplus x_{ 108} \oplus x_{ 236}^6 \oplus x_{ 231} \oplus x_{196}^{13} \oplus x_{ 252}^3x_{226}^7 \oplus x_{ 256}^2x_{ 240}^6 \oplus x_{222}^8x_{244}^5\\ & \quad \oplus x_{ 264}^0x_{260}^1 \oplus x_{190}x_{248}^4 \oplus x_{183}\overline{x_{ 53}}\oplus x_{173}x_{38} \oplus x_{264}^0x_{256}^2x_{252}^3x_{222}^8x_{190}x_{183}\end{aligned}$
10 $\begin{aligned}x_{ 147}& = z_ {10} \oplus x_{ 90} \oplus x_{ 109} \oplus x_{ 237}^6 \oplus x_{ 232}^6 \oplus x_{197}^{13} \oplus x_{ 253}^3x_{227}^7 \oplus x_{ 257}^2x_{ 241}^6 \oplus x_{223}^8x_{245}^5\\ & \quad\oplus x_{ 265}^0x_{261}^1 \oplus x_{191}x_{249}^4 \oplus x_{184}\overline{x_{ 54}}\oplus x_{174}x_{39} \oplus x_{265}^0x_{257}^2x_{253}^3x_{223}^8x_{191}x_{184}\end{aligned}$
11 $\begin{aligned}x_{ 148}& = z_ {11} \oplus x_{ 91} \oplus x_{ 110} \oplus x_{ 238}^6 \oplus x_{ 233}^6 \oplus x_{198}^{13} \oplus x_{ 254}^3x_{228}^7 \oplus x_{ 258}^2x_{ 242}^6 \oplus x_{224}^8x_{246}^5\\ & \quad \oplus x_{ 266}^0x_{262}^1 \oplus x_{192}x_{250}^4 \oplus x_{185}\overline{x_{ 55}}\oplus x_{175}x_{40} \oplus x_{266}^0x_{258}^2x_{254}^3x_{224}^8x_{192}x_{185}\end{aligned}$
12 $\begin{aligned}x_{ 149}& = z_ {12} \oplus x_{ 92} \oplus x_{ 111} \oplus x_{ 239}^6 \oplus x_{ 234}^6 \oplus x_{199}^{13} \oplus x_{ 255}^3x_{229}^7 \oplus x_{ 259}^2x_{ 243}^6 \oplus x_{225}^8x_{247}^5\\ & \quad\oplus x_{ 267}^0x_{263}^1 \oplus x_{193}x_{251}^4 \oplus x_{186}\overline{x_{ 56}}\oplus x_{176}x_{41} \oplus x_{267}^0x_{259}^2x_{255}^3x_{225}^8x_{193}x_{186}\end{aligned}$
13 $\begin{aligned}x_{ 150}& = z_ {13} \oplus x_{ 93} \oplus x_{ 112} \oplus x_{ 240}^6 \oplus x_{ 235}^6 \oplus x_{200}^{13} \oplus x_{ 256}^3x_{230}^7 \oplus x_{ 260}^2x_{ 244}^6 \oplus x_{226}^8x_{248}^5\\ & \quad\oplus x_{ 268}^0x_{264}^1 \oplus x_{194}^{13}x_{252}^4 \oplus x_{187}\overline{x_{ 57}}\oplus x_{177}x_{42} \oplus x_{268}^0x_{260}^2x_{256}^3x_{226}^8x_{194}^{13}x_{187}\end{aligned}$
14 $\begin{aligned}x_{ 151}& = z_ {14} \oplus x_{ 94} \oplus x_{ 113} \oplus x_{ 241}^6 \oplus x_{ 236}^6 \oplus x_{201}^{13} \oplus x_{ 257}^3x_{231}^7 \oplus x_{ 261}^2x_{ 245}^6 \oplus x_{227}^8x_{249}^5\\ & \quad\oplus x_{ 269}^0x_{265}^1 \oplus x_{195}^{13}x_{253}^4 \oplus x_{188}\overline{x_{ 58}}\oplus x_{178}x_{43} \oplus x_{269}^0x_{261}^2x_{257}^3x_{227}^8x_{195}^{13}x_{188}\end{aligned}$
15 $\begin{aligned}x_{ 152}& = z_ {15} \oplus x_{ 95} \oplus x_{ 114} \oplus x_{ 242}^6 \oplus x_{ 237}^6 \oplus x_{202}^{13} \oplus x_{ 258}^3x_{232}^7 \oplus x_{ 262}^2x_{ 246}^6 \oplus x_{228}^8x_{250}^5\\ & \quad\oplus x_{ 270}^0x_{266}^1 \oplus x_{196}^{13}x_{254}^4 \oplus x_{189}\overline{x_{59}}\oplus x_{179}x_{44} \oplus x_{270}^0x_{262}^2x_{258}^3x_{228}^8x_{196}^{13}x_{189}\end{aligned}$
16 $\begin{aligned}x_{ 153}& = z_ {16} \oplus x_{ 96} \oplus x_{ 115} \oplus x_{ 243}^6 \oplus x_{ 238}^6 \oplus x_{203}^{13} \oplus x_{ 259}^3x_{233}^7 \oplus x_{ 263}^2x_{ 247}^6 \oplus x_{229}^8x_{251}^5\\ & \quad \oplus x_{ 271}^0x_{267}^1 \oplus x_{197}^{13}x_{255}^4 \oplus x_{190}\overline{x_{60}}\oplus x_{180}x_{45} \oplus x_{271}^0x_{263}^2x_{259}^3x_{229}^8x_{197}^{13}x_{190}\end{aligned}$
17 $\begin{aligned}x_{ 154}& = z_ {17} \oplus x_{ 97} \oplus x_{ 116} \oplus x_{ 244}^6 \oplus x_{ 239}^6 \oplus x_{204}^{13} \oplus x_{ 260}^3x_{234}^7 \oplus x_{ 264}^2x_{ 248}^6 \oplus x_{230}^8x_{252}^5\\ & \quad \oplus x_{ 272}^0x_{268}^1 \oplus x_{198}^{13}x_{256}^4 \oplus x_{191}\overline{x_{61}}\oplus x_{181}\overline{x_{46}} \oplus x_{272}^0x_{264}^2x_{260}^3x_{230}^8x_{198}^{13}x_{191}\end{aligned}$
18 $\begin{aligned}x_{ 155}& = z_ {18} \oplus x_{ 98} \oplus x_{ 117} \oplus x_{ 245}^6 \oplus x_{ 240}^6 \oplus x_{205}^{13} \oplus x_{ 261}^3x_{235}^7 \oplus x_{ 265}^2x_{ 249}^6 \oplus x_{231}^8x_{253}^5\\ & \quad\oplus x_{ 273}^0x_{269}^1 \oplus x_{199}^{13}x_{257}^4 \oplus x_{192}\overline{x_{62}}\oplus x_{182}\overline{x_{47}} \oplus x_{273}^0x_{265}^2x_{261}^3x_{231}^8x_{199}^{13}x_{192}\end{aligned}$
19 $\begin{aligned}x_{ 156}& = z_ {19} \oplus x_{ 99} \oplus x_{ 118} \oplus x_{ 246}^6 \oplus x_{ 241}^6 \oplus x_{206}^{13} \oplus x_{ 262}^3x_{236}^7 \oplus x_{ 266}^2x_{ 250}^6 \oplus x_{232}^8x_{254}^5\\ & \quad \oplus x_{ 274}^0x_{270}^1 \oplus x_{200}^{13}x_{258}^4 \oplus x_{193}\overline{x_{63}}\oplus x_{183}\overline{x_{48}} \oplus x_{274}^0x_{266}^2x_{262}^3x_{232}^8x_{200}^{13}x_{193}\end{aligned}$
20 $\begin{aligned}x_{ 157}& = z_ {20} \oplus x_{100} \oplus x_{ 119} \oplus x_{ 247}^6 \oplus x_{ 242}^6 \oplus x_{207}^{13} \oplus x_{ 263}^3x_{237}^7 \oplus x_{ 267}^2x_{ 251}^6 \oplus x_{233}^8x_{255}^5\\ & \quad \oplus x_{ 275}^0x_{271}^1 \oplus x_{201}^{13}x_{259}^4 \oplus x_{194}^{13}\overline{x_{64}}\oplus x_{184}\overline{x_{49}} \oplus x_{275}^0x_{267}^2x_{263}^3x_{233}^8x_{201}^{13}x_{194}^{13}\end{aligned}$
21 $\begin{aligned}x_{ 158}& = z_ {21} \oplus x_{101} \oplus x_{ 120} \oplus x_{ 248}^6 \oplus x_{ 243}^6 \oplus x_{208}^{13} \oplus x_{ 264}^3x_{238}^7 \oplus x_{ 268}^2x_{ 252}^6 \oplus x_{234}^8x_{256}^5\\ & \quad \oplus x_{ 276}^0x_{272}^1 \oplus x_{202}^{13}x_{260}^4 \oplus x_{195}^{13}\overline{x_{65}}\oplus x_{185}\overline{x_{50}} \oplus x_{276}^0x_{268}^2x_{264}^3x_{234}^8x_{202}^{13}x_{195}^{13}\end{aligned}$
22 $\begin{aligned}x_{ 159}& = z_ {22} \oplus x_{102} \oplus x_{ 121} \oplus x_{ 249}^6 \oplus x_{ 244}^6 \oplus x_{209}^{13} \oplus x_{ 265}^3x_{239}^7 \oplus x_{ 269}^2x_{ 253}^6 \oplus x_{235}^8x_{257}^5\\ & \quad \oplus x_{ 277}^0x_{273}^1 \oplus x_{203}^{13}x_{261}^4 \oplus x_{196}^{13}\overline{x_{66}}\oplus x_{186}\overline{x_{51}} \oplus x_{277}^0x_{269}^2x_{265}^3x_{235}^8x_{203}^{13}x_{196}^{13}\end{aligned}$
23 $\begin{aligned}x_{ 160}& = z_ {23} \oplus x_{103} \oplus x_{ 122} \oplus x_{ 250}^6 \oplus x_{ 245}^6 \oplus x_{210}^{13} \oplus x_{ 266}^3x_{240}^7 \oplus x_{ 270}^2x_{ 254}^6 \oplus x_{236}^8x_{258}^5\\ & \quad \oplus x_{ 278}^0x_{274}^1 \oplus x_{204}^{13}x_{262}^4 \oplus x_{197}^{13}\overline{x_{67}}\oplus x_{187}\overline{x_{52}} \oplus x_{278}^0x_{270}^2x_{266}^3x_{236}^8x_{204}^{13}x_{197}^{13}\end{aligned}$
24 $\begin{aligned}x_{ 161}& = z_ {24} \oplus x_{104} \oplus x_{ 123} \oplus x_{ 251}^6 \oplus x_{ 246}^6 \oplus x_{211}^{13} \oplus x_{ 267}^3x_{241}^7 \oplus x_{ 271}^2x_{ 255}^6 \oplus x_{237}^8x_{259}^5\\ & \quad \oplus x_{ 279}^0x_{275}^1 \oplus x_{205}^{13}x_{263}^4 \oplus x_{198}^{13}\overline{x_{68}}\oplus x_{188}\overline{x_{53}} \oplus x_{279}^0x_{271}^2x_{267}^3x_{237}^8x_{205}^{13}x_{198}^{13} \end{aligned}$
25 $\begin{aligned}x_{ 162}& = z_ {25} \oplus x_{105} \oplus x_{ 124} \oplus x_{ 252}^6 \oplus x_{ 247}^6 \oplus x_{212}^{13} \oplus x_{ 268}^3x_{242}^7 \oplus x_{ 272}^2x_{ 256}^6 \oplus x_{238}^8x_{260}^5\\ & \quad\oplus x_{ 280}^0x_{276}^1 \oplus x_{206}^{13}x_{264}^4 \oplus x_{199}^{13}\overline{x_{69}}\oplus x_{189}\overline{x_{54}} \oplus x_{280}^0x_{272}^2x_{268}^3x_{238}^8x_{206}^{13}x_{199}^{13} \end{aligned}$
26 $\begin{aligned}x_{ 163}& = z_ {26} \oplus x_{106} \oplus x_{ 125} \oplus x_{ 253}^6 \oplus x_{ 248}^6 \oplus x_{213}^{13} \oplus x_{ 269}^3x_{243}^7 \oplus x_{ 273}^2x_{ 257}^6 \oplus x_{239}^8x_{261}^5\\ & \quad\oplus x_{ 281}^0x_{277}^1 \oplus x_{207}^{13}x_{265}^4 \oplus x_{200}^{13}\overline{x_{70}}\oplus x_{190}\overline{x_{55}} \oplus x_{281}^0x_{273}^2x_{269}^3x_{239}^8x_{207}^{13}x_{200}^{13}\end{aligned}$
27 $\begin{aligned}x_{ 164}& = z_ {27} \oplus x_{107} \oplus x_{ 126} \oplus x_{ 254}^6 \oplus x_{ 249}^6 \oplus x_{214}^{13} \oplus x_{ 270}^3x_{244}^7 \oplus x_{ 274}^2x_{ 258}^6 \oplus x_{240}^8x_{262}^5\\ & \quad\oplus x_{ 282}^0x_{278}^1 \oplus x_{208}^{13}x_{266}^4 \oplus x_{201}^{13}\overline{x_{71}}\oplus x_{191}\overline{x_{56}} \oplus x_{282}^0x_{274}^2x_{270}^3x_{240}^8x_{208}^{13}x_{201}^{13}\end{aligned}$
28 $\begin{aligned}x_{ 165}& = z_ {28} \oplus x_{108} \oplus x_{ 127} \oplus x_{ 255}^6 \oplus x_{ 250}^6 \oplus x_{215}^{13} \oplus x_{ 271}^3x_{245}^7 \oplus x_{ 275}^2x_{ 259}^6 \oplus x_{241}^8x_{263}^5\\ & \quad\oplus x_{ 283}^0x_{279}^1 \oplus x_{209}^{13}x_{267}^4 \oplus x_{202}^{13}\overline{x_{72}}\oplus x_{192}\overline{x_{57}} \oplus x_{283}^0x_{275}^2x_{271}^3x_{241}^8x_{209}^{13}x_{202}^{13}\end{aligned}$
29 $\begin{aligned}x_{ 166}& = z_ {29} \oplus x_{109} \oplus x_{ 128} \oplus x_{ 256}^6 \oplus x_{ 251}^6 \oplus x_{216}^{13} \oplus x_{ 272}^3x_{246}^7 \oplus x_{ 276}^2x_{ 260}^6 \oplus x_{242}^8x_{264}^5\\ & \quad\oplus x_{ 284}^0x_{280}^1 \oplus x_{210}^{13}x_{268}^4 \oplus x_{203}^{13}\overline{x_{73}}\oplus x_{193}\overline{x_{58}} \oplus x_{284}^0x_{276}^2x_{272}^3x_{242}^8x_{210}^{13}x_{203}^{13}\end{aligned}$
30 $\begin{aligned}x_{ 167}& = z_ {30} \oplus x_{110} \oplus x_{ 129} \oplus x_{ 257}^6 \oplus x_{ 252}^6 \oplus x_{217}^{13} \oplus x_{ 273}^3x_{247}^7 \oplus x_{ 277}^2x_{ 261}^6 \oplus x_{243}^8x_{265}^5\\ & \quad\oplus x_{ 285}^0x_{281}^1 \oplus x_{211}^{13}x_{269}^4 \oplus x_{204}^{13}\overline{x_{74}}\oplus x_{194}^{13}\overline{x_{59}} \oplus x_{285}^0x_{277}^2x_{273}^3x_{243}^8x_{211}^{13}x_{204}^{13}\end{aligned}$
31 $\begin{aligned}x_{ 168}& = z_ {31} \oplus x_{111} \oplus x_{ 130} \oplus x_{ 258}^6 \oplus x_{ 253}^6 \oplus x_{218}^{13} \oplus x_{ 274}^3x_{248}^7 \oplus x_{ 278}^2x_{ 262}^6 \oplus x_{244}^8x_{266}^5\\ & \quad\oplus x_{ 286}^0x_{282}^1 \oplus x_{212}^{13}x_{270}^4 \oplus x_{205}^{13}\overline{x_{75}}\oplus x_{195}^{13}\overline{x_{60}} \oplus x_{286}^0x_{278}^2x_{274}^3x_{244}^8x_{212}^{13}x_{205}^{13}\end{aligned}$
32 $\begin{aligned}x_{ 169}& = z_ {32} \oplus x_{112} \oplus x_{ 131} \oplus x_{ 259}^6 \oplus x_{ 254}^6 \oplus x_{219}^{13} \oplus x_{ 275}^3x_{249}^7 \oplus x_{ 279}^2x_{ 263}^6 \oplus x_{245}^8x_{267}^5\\ & \quad\oplus x_{ 287}^0x_{283}^1 \oplus x_{213}^{13}x_{271}^4 \oplus x_{206}^{13}\overline{x_{76}}\oplus x_{196}^{13}\overline{x_{61}} \oplus x_{287}^0x_{279}^2x_{275}^3x_{245}^8x_{213}^{13}x_{206}^{13}\end{aligned}$
33 $\begin{aligned}x_{170}& = z_ {33} \oplus x_{113} \oplus x_{ 132} \oplus x_{ 260}^6 \oplus x_{ 255}^6 \oplus x_{220}^{13} \oplus x_{ 276}^3x_{250}^7 \oplus x_{ 280}^2x_{ 264}^6 \oplus x_{246}^8x_{268}^5\\ & \quad\oplus x_{ 288}^0x_{284}^1 \oplus x_{214}^{13}x_{272}^4 \oplus x_{207}^{13}x_{77}\oplus x_{197}^{13}\overline{x_{62}} \oplus x_{288}^0x_{280}^2x_{276}^3x_{246}^8x_{214}^{13}x_{207}^{13}\end{aligned}$
34 $\begin{aligned} x_{171}& = z_ {34} \oplus x_{114} \oplus x_{ 133} \oplus x_{ 261}^6 \oplus x_{ 256}^6 \oplus x_{221}^{13} \oplus x_{ 277}^3x_{251}^7 \oplus x_{ 281}^2x_{ 265}^6 \oplus x_{247}^8x_{269}^5\\ & \quad\oplus x_{ 289}^0x_{285}^1 \oplus x_{215}^{13}x_{273}^4 \oplus x_{208}^{13}x_{78}\oplus x_{198}^{13}\overline{x_{63}} \oplus x_{289}^0x_{281}^2x_{277}^3x_{247}^8x_{215}^{13}x_{208}^{13}\end{aligned}$
Table 5.  Possible tradeoffs for conditional BSW sampling resistance based TMDTO attack
$ \delta $ $ D' $ $ T' $ $ M $ $ P $
$ 30 $ $ 2^{104} $ $ 2^{99} $ $ 2^{122} $ $ 2^{152} $
$ 32 $ $ 2^{106} $ $ 2^{103} $ $ 2^{118} $ $ 2^{150} $
$ 34 $ $ 2^{108} $ $ 2^{107} $ $ 2^{114} $ $ 2^{148} $
$ \delta $ $ D' $ $ T' $ $ M $ $ P $
$ 30 $ $ 2^{104} $ $ 2^{99} $ $ 2^{122} $ $ 2^{152} $
$ 32 $ $ 2^{106} $ $ 2^{103} $ $ 2^{118} $ $ 2^{150} $
$ 34 $ $ 2^{108} $ $ 2^{107} $ $ 2^{114} $ $ 2^{148} $
[1]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[2]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

[3]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[4]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[5]

Paul E. Anderson, Timothy P. Chartier, Amy N. Langville, Kathryn E. Pedings-Behling. The rankability of weighted data from pairwise comparisons. Foundations of Data Science, 2021  doi: 10.3934/fods.2021002

[6]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[7]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[8]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[9]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[10]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (2) : 697-735. doi: 10.3934/cpaa.2020286

[11]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[12]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[13]

Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L. Bertozzi, Stanley J. Osher. Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training. Inverse Problems & Imaging, 2021, 15 (1) : 129-145. doi: 10.3934/ipi.2020046

[14]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[15]

Geir Evensen, Javier Amezcua, Marc Bocquet, Alberto Carrassi, Alban Farchi, Alison Fowler, Pieter L. Houtekamer, Christopher K. Jones, Rafael J. de Moraes, Manuel Pulido, Christian Sampson, Femke C. Vossepoel. An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation. Foundations of Data Science, 2020  doi: 10.3934/fods.2021001

[16]

Karol Mikula, Jozef Urbán, Michal Kollár, Martin Ambroz, Ivan Jarolímek, Jozef Šibík, Mária Šibíková. An automated segmentation of NATURA 2000 habitats from Sentinel-2 optical data. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1017-1032. doi: 10.3934/dcdss.2020348

[17]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

[18]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[19]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[20]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (95)
  • HTML views (383)
  • Cited by (0)

Other articles
by authors

[Back to Top]