# American Institute of Mathematical Sciences

November  2021, 15(4): 557-573. doi: 10.3934/amc.2020082

## Infinite families of $3$-designs from o-polynomials

 1 Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 2 School of Mathematics and Information, China West Normal University, Sichuan Nanchong, 637002, China

* Corresponding author: Chunming Tang

Received  November 2019 Revised  February 2020 Published  November 2021 Early access  April 2020

Fund Project: C. Ding's research was supported by the Hong Kong Research Grants Council, Proj. No. 16300415. C. Tang was supported by National Natural Science Foundation of China (Grant No. 11871058) and China West Normal University (14E013, CXTD2014-4 and the Meritocracy Research Funds)

A classical approach to constructing combinatorial designs is the group action of a $t$-transitive or $t$-homogeneous permutation group on a base block, which yields a $t$-design in general. It is open how to use a $t$-transitive or $t$-homogeneous permutation group to construct a $(t+1)$-design in general. It is known that the general affine group ${\mathrm{GA}}_1( {\mathrm{GF}}(q))$ is doubly transitive on ${\mathrm{GF}}(q)$. The classical theorem says that the group action by ${\mathrm{GA}}_1( {\mathrm{GF}}(q))$ yields $2$-designs in general. The main objective of this paper is to construct $3$-designs with ${\mathrm{GA}}_1( {\mathrm{GF}}(q))$ and o-polynomials. O-polynomials (equivalently, hyperovals) were used to construct only $2$-designs in the literature. This paper presents for the first time infinite families of $3$-designs from o-polynomials (equivalently, hyperovals).

Citation: Cunsheng Ding, Chunming Tang. Infinite families of $3$-designs from o-polynomials. Advances in Mathematics of Communications, 2021, 15 (4) : 557-573. doi: 10.3934/amc.2020082
##### References:
 [1] E. F. Assmus, Jr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9781316529836.  Google Scholar [2] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1986.   Google Scholar [3] W. Cherowitzo, Hyperovals in Desarguesian planes of even order, Combinatorics '86 (Trento, 1986), Annals of Discrete Math., North-Holland, Amsterdam, 37 (1988), 87-94.  doi: 10.1016/S0167-5060(08)70228-0.  Google Scholar [4] W. Cherowitzo, Hyperovals in Desarguesian planes: An update, Disc. Math., 155 (1996), 31-38.  doi: 10.1016/0012-365X(94)00367-R.  Google Scholar [5] W. Cherowitzo, T. Penttila, I. Pinneri and G. F. Royle, Flocks and ovals, Geometriae Dedicata, 60 (1996), 17-37.  doi: 10.1007/BF00150865.  Google Scholar [6] C. S. Ding and C. J. Li, Infinite families of 2-designs and 3-designs from linear codes, Discrete Math., 340 (2017), 2415-2431.  doi: 10.1016/j.disc.2017.05.013.  Google Scholar [7] C. S. Ding and J. Yuan, A family of skew Hadamard difference sets, J. Combinatorial Theory Ser. A, 113 (2006), 1526-1535.  doi: 10.1016/j.jcta.2005.10.006.  Google Scholar [8] C. Ding and P. Yuan, Five constructions of permutation polynomials over GF$(q^2)$, unpublished manuscript, (2015). http://arXiv.org/abs/1511.00322. Google Scholar [9] C. S. Ding and Z. C. Zhou, Parameters of $2$-designs from some BCH codes, Codes, Cryptography and Information Security, Lecture Notes in Computer Science, Springer, Cham, 10194 (2017), 110-127.  doi: 10.1007/978-3-319-55589-8_8.  Google Scholar [10] D. G. Glynn, Two new sequences of ovals in finite Desarguesian planes of even order, Combinatorial Mathematics X, Lecture Notes in Mathematics, Heidelberg, Springer Verlag, 1983 (1983), 217-229.  doi: 10.1007/BFb0071521.  Google Scholar [11] D. G. Glynn, A condition for the existence of ovals in PG(2, $q$), $q$ even, Geometriae Dedicata, 32 (1989), 247-252.  doi: 10.1007/BF00147433.  Google Scholar [12] W.-A. Jackson, A chracterisation of Hadamard designs with $SL(2, q)$ acting transitively, Geom. Dedicata, 46 (1993), 197-206.  doi: 10.1007/BF01264918.  Google Scholar [13] R. Lidl and H. Niederreiter, Finite Fields, Second edition, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.   Google Scholar [14] A. Maschietti, Difference set and hyperovals, Des. Codes Cryptg., 14 (1998), 89-98.  doi: 10.1023/A:1008264606494.  Google Scholar [15] S. E. Payne, A new infinite family of generalized quadrangles, Congressus Numerantium, 49 (1985), 115-128.   Google Scholar [16] B. Segre, Sui $k$-archi nei piani finiti di caratteristica 2, Revue de Math. Pures Appl., 2 (1957), 289-300.   Google Scholar [17] B. Segre, Ovali e curvenei piani di Galois di caratteristica due, Atti Accad. Naz. Lincei Rend., 32 (1962), 785-790.   Google Scholar [18] B. Segre and U. Bartocci, Ovali ed alte curve nei piani di Galois di caratteristica due, Acta Arith., 18 (1971), 423-449.  doi: 10.4064/aa-18-1-423-449.  Google Scholar [19] N. V. Semakov and V. A. Zinov'ev, Balanced codes and tactical configurations, Problemy Peredachi Informatsii, 5 (1969), 22-28.   Google Scholar [20] M. S. Shrikhande, Quasi-symmetric designs, Handbook of Combinatorial Designs, 2nd Edition, CRC Press, New York, (2007), 578–582. Google Scholar [21] C. M. Tang, Infinite families of 3-designs from APN functions, J. Combinatorial Designs, 28 (2020), 97-117.  doi: 10.1002/jcd.21685.  Google Scholar [22] V. D. Tonchev, Codes and designs, Handbook of coding theory, North-Holland, Amsterdam, 1, 2 (1998), 1229-1267.   Google Scholar [23] Q. Xiang, On balanced binary sequences with two-level autocorrelation functions, IEEE Trans. Inf. Theory, 44 (1998), 3153-3156.  doi: 10.1109/18.737547.  Google Scholar

show all references

##### References:
 [1] E. F. Assmus, Jr. and J. D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9781316529836.  Google Scholar [2] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1986.   Google Scholar [3] W. Cherowitzo, Hyperovals in Desarguesian planes of even order, Combinatorics '86 (Trento, 1986), Annals of Discrete Math., North-Holland, Amsterdam, 37 (1988), 87-94.  doi: 10.1016/S0167-5060(08)70228-0.  Google Scholar [4] W. Cherowitzo, Hyperovals in Desarguesian planes: An update, Disc. Math., 155 (1996), 31-38.  doi: 10.1016/0012-365X(94)00367-R.  Google Scholar [5] W. Cherowitzo, T. Penttila, I. Pinneri and G. F. Royle, Flocks and ovals, Geometriae Dedicata, 60 (1996), 17-37.  doi: 10.1007/BF00150865.  Google Scholar [6] C. S. Ding and C. J. Li, Infinite families of 2-designs and 3-designs from linear codes, Discrete Math., 340 (2017), 2415-2431.  doi: 10.1016/j.disc.2017.05.013.  Google Scholar [7] C. S. Ding and J. Yuan, A family of skew Hadamard difference sets, J. Combinatorial Theory Ser. A, 113 (2006), 1526-1535.  doi: 10.1016/j.jcta.2005.10.006.  Google Scholar [8] C. Ding and P. Yuan, Five constructions of permutation polynomials over GF$(q^2)$, unpublished manuscript, (2015). http://arXiv.org/abs/1511.00322. Google Scholar [9] C. S. Ding and Z. C. Zhou, Parameters of $2$-designs from some BCH codes, Codes, Cryptography and Information Security, Lecture Notes in Computer Science, Springer, Cham, 10194 (2017), 110-127.  doi: 10.1007/978-3-319-55589-8_8.  Google Scholar [10] D. G. Glynn, Two new sequences of ovals in finite Desarguesian planes of even order, Combinatorial Mathematics X, Lecture Notes in Mathematics, Heidelberg, Springer Verlag, 1983 (1983), 217-229.  doi: 10.1007/BFb0071521.  Google Scholar [11] D. G. Glynn, A condition for the existence of ovals in PG(2, $q$), $q$ even, Geometriae Dedicata, 32 (1989), 247-252.  doi: 10.1007/BF00147433.  Google Scholar [12] W.-A. Jackson, A chracterisation of Hadamard designs with $SL(2, q)$ acting transitively, Geom. Dedicata, 46 (1993), 197-206.  doi: 10.1007/BF01264918.  Google Scholar [13] R. Lidl and H. Niederreiter, Finite Fields, Second edition, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.   Google Scholar [14] A. Maschietti, Difference set and hyperovals, Des. Codes Cryptg., 14 (1998), 89-98.  doi: 10.1023/A:1008264606494.  Google Scholar [15] S. E. Payne, A new infinite family of generalized quadrangles, Congressus Numerantium, 49 (1985), 115-128.   Google Scholar [16] B. Segre, Sui $k$-archi nei piani finiti di caratteristica 2, Revue de Math. Pures Appl., 2 (1957), 289-300.   Google Scholar [17] B. Segre, Ovali e curvenei piani di Galois di caratteristica due, Atti Accad. Naz. Lincei Rend., 32 (1962), 785-790.   Google Scholar [18] B. Segre and U. Bartocci, Ovali ed alte curve nei piani di Galois di caratteristica due, Acta Arith., 18 (1971), 423-449.  doi: 10.4064/aa-18-1-423-449.  Google Scholar [19] N. V. Semakov and V. A. Zinov'ev, Balanced codes and tactical configurations, Problemy Peredachi Informatsii, 5 (1969), 22-28.   Google Scholar [20] M. S. Shrikhande, Quasi-symmetric designs, Handbook of Combinatorial Designs, 2nd Edition, CRC Press, New York, (2007), 578–582. Google Scholar [21] C. M. Tang, Infinite families of 3-designs from APN functions, J. Combinatorial Designs, 28 (2020), 97-117.  doi: 10.1002/jcd.21685.  Google Scholar [22] V. D. Tonchev, Codes and designs, Handbook of coding theory, North-Holland, Amsterdam, 1, 2 (1998), 1229-1267.   Google Scholar [23] Q. Xiang, On balanced binary sequences with two-level autocorrelation functions, IEEE Trans. Inf. Theory, 44 (1998), 3153-3156.  doi: 10.1109/18.737547.  Google Scholar
 [1] Igor E. Pritsker and Richard S. Varga. Weighted polynomial approximation in the complex plane. Electronic Research Announcements, 1997, 3: 38-44. [2] Primitivo B. Acosta-Humánez, J. Tomás Lázaro, Juan J. Morales-Ruiz, Chara Pantazi. On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1767-1800. doi: 10.3934/dcds.2015.35.1767 [3] Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021035 [4] Antoni Ferragut, Jaume Llibre, Adam Mahdi. Polynomial inverse integrating factors for polynomial vector fields. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 387-395. doi: 10.3934/dcds.2007.17.387 [5] Laura DeMarco, Kevin Pilgrim. Hausdorffization and polynomial twists. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1405-1417. doi: 10.3934/dcds.2011.29.1405 [6] Azniv Kasparian, Ivan Marinov. Duursma's reduced polynomial. Advances in Mathematics of Communications, 2017, 11 (4) : 647-669. doi: 10.3934/amc.2017048 [7] Murray R. Bremner. Polynomial identities for ternary intermolecular recombination. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1387-1399. doi: 10.3934/dcdss.2011.4.1387 [8] Aihua Li. An algebraic approach to building interpolating polynomial. Conference Publications, 2005, 2005 (Special) : 597-604. doi: 10.3934/proc.2005.2005.597 [9] Luiz Henrique de Figueiredo, Diego Nehab, Jorge Stolfi, João Batista S. de Oliveira. Rigorous bounds for polynomial Julia sets. Journal of Computational Dynamics, 2016, 3 (2) : 113-137. doi: 10.3934/jcd.2016006 [10] Alain Jacquemard, Weber Flávio Pereira. On periodic orbits of polynomial relay systems. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 331-347. doi: 10.3934/dcds.2007.17.331 [11] Yeor Hafouta. A functional CLT for nonconventional polynomial arrays. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2827-2873. doi: 10.3934/dcds.2020151 [12] Ricardo Diaz and Sinai Robins. The Ehrhart polynomial of a lattice n -simplex. Electronic Research Announcements, 1996, 2: 1-6. [13] Davor Dragičević. Admissibility and polynomial dichotomies for evolution families. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1321-1336. doi: 10.3934/cpaa.2020064 [14] Mariantonia Cotronei, Tomas Sauer. Full rank filters and polynomial reproduction. Communications on Pure & Applied Analysis, 2007, 6 (3) : 667-687. doi: 10.3934/cpaa.2007.6.667 [15] M. A. M. Alwash. Polynomial differential equations with small coefficients. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1129-1141. doi: 10.3934/dcds.2009.25.1129 [16] Xu Zhang, Guanrong Chen. Polynomial maps with hidden complex dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2941-2954. doi: 10.3934/dcdsb.2018293 [17] Krzysztof Frączek. Polynomial growth of the derivative for diffeomorphisms on tori. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 489-516. doi: 10.3934/dcds.2004.11.489 [18] Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 [19] Víctor Jiménez López, Gabriel Soler López. A topological characterization of ω-limit sets for continuous flows on the projective plane. Conference Publications, 2001, 2001 (Special) : 254-258. doi: 10.3934/proc.2001.2001.254 [20] Jong Uhn Kim. On the stochastic Burgers equation with a polynomial nonlinearity in the real line. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 835-866. doi: 10.3934/dcdsb.2006.6.835

2020 Impact Factor: 0.935

Article outline