doi: 10.3934/amc.2020083

Rank weights for arbitrary finite field extensions

Institut Fourier, CS 40700, 38058 Grenoble Cedex 9, France

* Corresponding author: Grégory Berhuy

Received  February 2019 Revised  December 2019 Published  June 2020

In this paper, we study several definitions of generalized rank weights for arbitrary finite extensions of fields. We prove that all these definitions coincide, generalizing known results for extensions of finite fields.

Citation: Grégory Berhuy, Jean Fasel, Odile Garotta. Rank weights for arbitrary finite field extensions. Advances in Mathematics of Communications, doi: 10.3934/amc.2020083
References:
[1]

D. Augot, P. Loidreau and G. Robert, Rank metric and Gabidulin codes in characteristic zero, in 2013 IEEE International Symposium on Information Theory, (2013), 509–513. doi: 10.1109/ISIT.2013.6620278.  Google Scholar

[2]

S. Bosch, W. Lütkebohmert and M. Raynaud, Néron Models. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 3, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-51438-8.  Google Scholar

[3]

B. Conrad, O. Gabber and G. Prasad, Pseudo-Reductive Groups, New Mathematical Monographs, Vol. 26, Cambridge University Press, Cambridge, 2015. doi: 10.1017/CBO9781316092439.  Google Scholar

[4]

P. Delsarte, On subfield codes of modified Reed-Solomon codes, IEEE Trans. Inform. Theory IT-21, (1975), no. 5,575–576. doi: 10.1109/tit.1975.1055435.  Google Scholar

[5]

J. Ducoat, Generalized rank weights: A duality statement. Topics in Finite Fields, in Contemporary Mathematics, Vol. 632, Amer. Math. Soc., Providence, RI, 2015,101–109. doi: 10.1090/conm/632/12622.  Google Scholar

[6]

È. M. Gabidulin, Theory of codes of maximum rank distance, Problemy Peredachi Informatsii, 21 (1985), 3-16.   Google Scholar

[7]

M. Giorgetti and A. Previtali, Galois invariance, trace codes and subfield subcodes, Finite Fields Appl., 16 (2010), 96-99.  doi: 10.1016/j.ffa.2010.01.002.  Google Scholar

[8]

A. Grothendieck, Éléments de géométrie algèbrique: Ⅱ. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math., 8 (1961), 5-222.   Google Scholar

[9]

R. Jurrius and G. R. Pellikaan, On defining generalized rank weights, Adv. Math. Commun., 11 (2017), 225-235.  doi: 10.3934/amc.2017014.  Google Scholar

[10]

J. KuriharaR. Matsumoto and T. Uyematsu, Relative generalized rank weight of linear codes and its applications to network coding, IEEE Trans. Inform. Theory, 61 (2015), 3912-3936.  doi: 10.1109/TIT.2015.2429713.  Google Scholar

[11]

F. Oggier and A. Sboui, On the existence of generalized rank weights, in 2012 IEEE International Symposium on Information Theory, (2012), 406–410. Google Scholar

[12]

B. Poonen, Rational Points on Varieties, Graduate Studies in Mathematics, Vol. 186, American Mathematical Society, Providence, RI, 2017.  Google Scholar

show all references

References:
[1]

D. Augot, P. Loidreau and G. Robert, Rank metric and Gabidulin codes in characteristic zero, in 2013 IEEE International Symposium on Information Theory, (2013), 509–513. doi: 10.1109/ISIT.2013.6620278.  Google Scholar

[2]

S. Bosch, W. Lütkebohmert and M. Raynaud, Néron Models. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 3, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-51438-8.  Google Scholar

[3]

B. Conrad, O. Gabber and G. Prasad, Pseudo-Reductive Groups, New Mathematical Monographs, Vol. 26, Cambridge University Press, Cambridge, 2015. doi: 10.1017/CBO9781316092439.  Google Scholar

[4]

P. Delsarte, On subfield codes of modified Reed-Solomon codes, IEEE Trans. Inform. Theory IT-21, (1975), no. 5,575–576. doi: 10.1109/tit.1975.1055435.  Google Scholar

[5]

J. Ducoat, Generalized rank weights: A duality statement. Topics in Finite Fields, in Contemporary Mathematics, Vol. 632, Amer. Math. Soc., Providence, RI, 2015,101–109. doi: 10.1090/conm/632/12622.  Google Scholar

[6]

È. M. Gabidulin, Theory of codes of maximum rank distance, Problemy Peredachi Informatsii, 21 (1985), 3-16.   Google Scholar

[7]

M. Giorgetti and A. Previtali, Galois invariance, trace codes and subfield subcodes, Finite Fields Appl., 16 (2010), 96-99.  doi: 10.1016/j.ffa.2010.01.002.  Google Scholar

[8]

A. Grothendieck, Éléments de géométrie algèbrique: Ⅱ. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math., 8 (1961), 5-222.   Google Scholar

[9]

R. Jurrius and G. R. Pellikaan, On defining generalized rank weights, Adv. Math. Commun., 11 (2017), 225-235.  doi: 10.3934/amc.2017014.  Google Scholar

[10]

J. KuriharaR. Matsumoto and T. Uyematsu, Relative generalized rank weight of linear codes and its applications to network coding, IEEE Trans. Inform. Theory, 61 (2015), 3912-3936.  doi: 10.1109/TIT.2015.2429713.  Google Scholar

[11]

F. Oggier and A. Sboui, On the existence of generalized rank weights, in 2012 IEEE International Symposium on Information Theory, (2012), 406–410. Google Scholar

[12]

B. Poonen, Rational Points on Varieties, Graduate Studies in Mathematics, Vol. 186, American Mathematical Society, Providence, RI, 2017.  Google Scholar

[1]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[2]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[3]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[4]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[5]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[6]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[7]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[8]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[9]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[10]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[11]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[12]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[13]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[14]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[15]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[16]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[17]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[18]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[19]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

2019 Impact Factor: 0.734

Article outline

[Back to Top]