doi: 10.3934/amc.2020085

An overview on skew constacyclic codes and their subclass of LCD codes

1. 

Faculty of Mathematics, University of Science and Technology Houari Boumedienne (USTHB), 16111 Bab Ezzouar, Algiers, Algeria

2. 

Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

Received  September 2019 Revised  February 2020 Published  June 2020

Fund Project: The third author is supported by the French government Investissements d'Avenir program ANR-11-LABX-0020-01

This paper is about a first characterization of LCD skew constacyclic codes and some constructions of LCD skew cyclic and skew negacyclic codes over $ \mathbb{F}_{p^2} $.

Citation: Ranya Djihad Boulanouar, Aicha Batoul, Delphine Boucher. An overview on skew constacyclic codes and their subclass of LCD codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2020085
References:
[1]

A. BatoulK. Guenda and T. A. Gulliver, Some constacyclic codes over finite chain rings, Adv. Math. Commun., 10 (2016), 683-694.  doi: 10.3934/amc.2016034.  Google Scholar

[2]

D. BoucherW. Geiselmann and F. Ulmer, Skew-cyclic codes, Appl. Algebra Engrg. Comm. Comput., 18 (2007), 379-389.  doi: 10.1007/s00200-007-0043-z.  Google Scholar

[3]

D. Boucher and F. Ulmer, A note on the dual codes of module skew codes, in Cryptography and Coding, Vol. 7089, Lecture Notes in Comput. Sci., 2011,230–243. doi: 10.1007/978-3-642-25516-8_14.  Google Scholar

[4]

D. Boucher and F. Ulmer, Self-dual skew codes and factorization of skew polynomials, J. Symbolic. Comput., 60 (2014), 47-61.  doi: 10.1016/j.jsc.2013.10.003.  Google Scholar

[5]

D. Boucher, Construction and number of self-dual skew codes over $ \mathbb{F}_{p^{2}} $, Adv. Math. Commun., 10 (2016), 4,765–795. doi: 10.3934/amc.2016040.  Google Scholar

[6]

D. Boucher, A first step towards the skew duadic codes, Adv. Math. Commun., 12 (2018), 3,553–577. doi: 10.3934/amc.2018033.  Google Scholar

[7]

C. Carlet, S. Mesnager, C. Tang and Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr. 86 (2018), 11, 2605–2618. doi: 10.1007/s10623-018-0463-8.  Google Scholar

[8]

N. L. Fogarty, On Skew-Constacyclic Codes, Ph.D dissertation, University of Kentucky, 2016.  Google Scholar

[9]

M. Giesbrecht, Factoring in skew-polynomial rings over finite fields, J. Symbolic Comput., 26 (1998), 463-486.  doi: 10.1006/jsco.1998.0224.  Google Scholar

[10]

C. GüneriaB. Özkayaa and P. Solé, Quasi-cyclic complementary dual codes, Finite Fields Appl., 42 (2016), 67-80.  doi: 10.1016/j.ffa.2016.07.005.  Google Scholar

[11]

C. Li, Hermitian LCD codes from cyclic codes, Des. Codes Cryptogr., 86 (2018), 2261-2278.  doi: 10.1007/s10623-017-0447-0.  Google Scholar

[12]

C. LiC. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inform. Theory, 63 (2017), 4344-4356.  doi: 10.1109/TIT.2017.2672961.  Google Scholar

[13]

F. J. MacWilliams, Combinatorial Properties of Elementary Abelian Groups, Ph.D. thesis, Radcliffe College, Cambridge, MA, 1962.  Google Scholar

[14]

J. L. Massey and X. Yang, The condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994), 391-393.  doi: 10.1016/0012-365X(94)90283-6.  Google Scholar

[15]

J. L. Massey, Linear codes with complementary duals, Discrete Math., 106-107 (1992), 337-342.  doi: 10.1016/0012-365X(92)90563-U.  Google Scholar

[16]

J. L. Massey, Reversible codes, Information and Control, 7 (1964), 369-380.  doi: 10.1016/S0019-9958(64)90438-3.  Google Scholar

[17]

B. R. McDonald, Finite rings with identity, in Pure and Applied Mathematics, Vol. 28, Marcel Dekker Inc., New York, 1974.  Google Scholar

[18]

R. W. K. Odoni, On additive polynomials over a finite field, Proc. Edinburgh Math. Soc., 42 (1999), 1-16.  doi: 10.1017/S0013091500019970.  Google Scholar

[19]

O. Ore, Theory of non-commutative polynomials, Ann. Math., 34 (1933), 480-508.  doi: 10.2307/1968173.  Google Scholar

[20]

B. PangS. Zhu and J. Li, On LCD repeated-root cyclic codes over finite fields, J. Appl. Math. Comput., 56 (2018), 625-635.  doi: 10.1007/s12190-017-1118-z.  Google Scholar

[21]

A. Sharma and T. Kaur, Enumeration formulae for self-dual, self-orthogonal and complementary-dual quasi-cyclic codes over finite fields, Cryptogr. Commun., 10 (2018), 401-435.  doi: 10.1007/s12095-017-0228-7.  Google Scholar

show all references

References:
[1]

A. BatoulK. Guenda and T. A. Gulliver, Some constacyclic codes over finite chain rings, Adv. Math. Commun., 10 (2016), 683-694.  doi: 10.3934/amc.2016034.  Google Scholar

[2]

D. BoucherW. Geiselmann and F. Ulmer, Skew-cyclic codes, Appl. Algebra Engrg. Comm. Comput., 18 (2007), 379-389.  doi: 10.1007/s00200-007-0043-z.  Google Scholar

[3]

D. Boucher and F. Ulmer, A note on the dual codes of module skew codes, in Cryptography and Coding, Vol. 7089, Lecture Notes in Comput. Sci., 2011,230–243. doi: 10.1007/978-3-642-25516-8_14.  Google Scholar

[4]

D. Boucher and F. Ulmer, Self-dual skew codes and factorization of skew polynomials, J. Symbolic. Comput., 60 (2014), 47-61.  doi: 10.1016/j.jsc.2013.10.003.  Google Scholar

[5]

D. Boucher, Construction and number of self-dual skew codes over $ \mathbb{F}_{p^{2}} $, Adv. Math. Commun., 10 (2016), 4,765–795. doi: 10.3934/amc.2016040.  Google Scholar

[6]

D. Boucher, A first step towards the skew duadic codes, Adv. Math. Commun., 12 (2018), 3,553–577. doi: 10.3934/amc.2018033.  Google Scholar

[7]

C. Carlet, S. Mesnager, C. Tang and Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr. 86 (2018), 11, 2605–2618. doi: 10.1007/s10623-018-0463-8.  Google Scholar

[8]

N. L. Fogarty, On Skew-Constacyclic Codes, Ph.D dissertation, University of Kentucky, 2016.  Google Scholar

[9]

M. Giesbrecht, Factoring in skew-polynomial rings over finite fields, J. Symbolic Comput., 26 (1998), 463-486.  doi: 10.1006/jsco.1998.0224.  Google Scholar

[10]

C. GüneriaB. Özkayaa and P. Solé, Quasi-cyclic complementary dual codes, Finite Fields Appl., 42 (2016), 67-80.  doi: 10.1016/j.ffa.2016.07.005.  Google Scholar

[11]

C. Li, Hermitian LCD codes from cyclic codes, Des. Codes Cryptogr., 86 (2018), 2261-2278.  doi: 10.1007/s10623-017-0447-0.  Google Scholar

[12]

C. LiC. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inform. Theory, 63 (2017), 4344-4356.  doi: 10.1109/TIT.2017.2672961.  Google Scholar

[13]

F. J. MacWilliams, Combinatorial Properties of Elementary Abelian Groups, Ph.D. thesis, Radcliffe College, Cambridge, MA, 1962.  Google Scholar

[14]

J. L. Massey and X. Yang, The condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994), 391-393.  doi: 10.1016/0012-365X(94)90283-6.  Google Scholar

[15]

J. L. Massey, Linear codes with complementary duals, Discrete Math., 106-107 (1992), 337-342.  doi: 10.1016/0012-365X(92)90563-U.  Google Scholar

[16]

J. L. Massey, Reversible codes, Information and Control, 7 (1964), 369-380.  doi: 10.1016/S0019-9958(64)90438-3.  Google Scholar

[17]

B. R. McDonald, Finite rings with identity, in Pure and Applied Mathematics, Vol. 28, Marcel Dekker Inc., New York, 1974.  Google Scholar

[18]

R. W. K. Odoni, On additive polynomials over a finite field, Proc. Edinburgh Math. Soc., 42 (1999), 1-16.  doi: 10.1017/S0013091500019970.  Google Scholar

[19]

O. Ore, Theory of non-commutative polynomials, Ann. Math., 34 (1933), 480-508.  doi: 10.2307/1968173.  Google Scholar

[20]

B. PangS. Zhu and J. Li, On LCD repeated-root cyclic codes over finite fields, J. Appl. Math. Comput., 56 (2018), 625-635.  doi: 10.1007/s12190-017-1118-z.  Google Scholar

[21]

A. Sharma and T. Kaur, Enumeration formulae for self-dual, self-orthogonal and complementary-dual quasi-cyclic codes over finite fields, Cryptogr. Commun., 10 (2018), 401-435.  doi: 10.1007/s12095-017-0228-7.  Google Scholar

Table 1.  Number of Euclidean and Hermitian LCD $ [2p,p]_{p^2} $ and $ [2p,p]_{p^2} $ MDS skew-cyclic codes for $ p = 3,5,7,11 $
p nbr of Euclidean LCD skew cyc. nbr of Hermitian LCD skew cyc.
$ [2p,p]_{p^2} $ $ [2p,p,p+1]_{p^2} $ $ [2p,p]_{p^2} $ $ [2p,p,p+1]_{p^2} $
3 18 16 36 32
5 3750 2412 3750 2412
7 705984 39564 941192 52752
11 259374246010 $ \geq 1 $ 311249095212 $ \geq 1 $
p nbr of Euclidean LCD skew cyc. nbr of Hermitian LCD skew cyc.
$ [2p,p]_{p^2} $ $ [2p,p,p+1]_{p^2} $ $ [2p,p]_{p^2} $ $ [2p,p,p+1]_{p^2} $
3 18 16 36 32
5 3750 2412 3750 2412
7 705984 39564 941192 52752
11 259374246010 $ \geq 1 $ 311249095212 $ \geq 1 $
Table 5.  Dimensions of MDS LCD skew codes over $ {\mathbb F}_9 $ with length $ n \leq 10 $ and dimension $ 1 < k < n-1 $
MDS Euclidean LCD MDS Hermitian LCD
length skew cyc skew nega skew cyc skew nega
4 2 2 no 2
6 3 3 3 no
8 3, 4, 5 4 3, 5 4
10 5 5 5 no
MDS Euclidean LCD MDS Hermitian LCD
length skew cyc skew nega skew cyc skew nega
4 2 2 no 2
6 3 3 3 no
8 3, 4, 5 4 3, 5 4
10 5 5 5 no
Table 6.  Dimensions of MDS LCD skew codes over $ {\mathbb F}_{25} $ with length $ n \leq 18 $ and dimension $ 1 < k < n-1 $
MDS Euclidean LCD MDS Hermitian LCD
length skew cyc skew nega skew cyc skew nega
4 2 2 no 2
6 2, 3, 4 2, 3, 4 2, 3, 4 2, 4
8 3, 4, 5 4 3, 5 4
10 5 5 5 no
12 3, 5, 6, 7, 9 6 3, 5, 7, 9 6
14 7 7 7 no
16 7, 8, 9 no 7, 9 no
18 9 9 9 no
MDS Euclidean LCD MDS Hermitian LCD
length skew cyc skew nega skew cyc skew nega
4 2 2 no 2
6 2, 3, 4 2, 3, 4 2, 3, 4 2, 4
8 3, 4, 5 4 3, 5 4
10 5 5 5 no
12 3, 5, 6, 7, 9 6 3, 5, 7, 9 6
14 7 7 7 no
16 7, 8, 9 no 7, 9 no
18 9 9 9 no
Table 7.  Dimensions of MDS LCD skew codes over $ {\mathbb F}_{49} $ with length $ n \leq 16 $ and dimension $ 1 < k < n-1 $
MDS Euclidean LCD MDS Hermitian LCD
length skew cyc skew nega skew cyc skew nega
4 2 2 no 2
6 2, 3, 4 2, 3, 4 2, 3, 4 2, 4
8 3, 4, 5 2, 4, 6 3, 5 2, 4, 6
10 4, 5, 6 4, 5, 6 4, 5, 6 4, 6
12 3, 5, 6, 7, 9 6 3, 5, 7, 9 6
14 7 7 7 no
16 3, 5, 7, 8, 9, 11, 13 8 3, 5, 7, 9, 11, 13 8
MDS Euclidean LCD MDS Hermitian LCD
length skew cyc skew nega skew cyc skew nega
4 2 2 no 2
6 2, 3, 4 2, 3, 4 2, 3, 4 2, 4
8 3, 4, 5 2, 4, 6 3, 5 2, 4, 6
10 4, 5, 6 4, 5, 6 4, 5, 6 4, 6
12 3, 5, 6, 7, 9 6 3, 5, 7, 9 6
14 7 7 7 no
16 3, 5, 7, 8, 9, 11, 13 8 3, 5, 7, 9, 11, 13 8
Table 2.  Best minimum distances and numbers of Euclidean LCD $ [2k,k] $ skew cyclic codes of length $ \leq 48 $ over $ {\mathbb F}_4 $ with skew generator polynomial not divisible by a central polynomial
Euclidean LCD skew cyc. Euclidean LCD skew cyc.
length best dist nbr length best dist nbr
2 2* 2 26 9 8 064
4 3* 4 28 11* 18 432
6 4* 4 30 12* 13 056
8 4* 16 32 10 65 536
10 5* 24 34 11* 115 200
12 5 32 36 11 114 688
14 6* 144 38 12* 523 264
16 6 256 40 12* 786 432
18 7 224 42 12 1 198 080
20 8* 768 44 13 4 063 232
22 8* 1 984 46 14* 8 392 704
24 9* 2 048 48 14* 8 388 608
Euclidean LCD skew cyc. Euclidean LCD skew cyc.
length best dist nbr length best dist nbr
2 2* 2 26 9 8 064
4 3* 4 28 11* 18 432
6 4* 4 30 12* 13 056
8 4* 16 32 10 65 536
10 5* 24 34 11* 115 200
12 5 32 36 11 114 688
14 6* 144 38 12* 523 264
16 6 256 40 12* 786 432
18 7 224 42 12 1 198 080
20 8* 768 44 13 4 063 232
22 8* 1 984 46 14* 8 392 704
24 9* 2 048 48 14* 8 388 608
Table 3.  Best minimum distances and numbers of LCD $ [2k,k] $ skew codes of length $ \leq 24 $ over $ {\mathbb F}_9 $ with skew generator polynomial not divisible by a central polynomial
Euclidean LCD
skew cyc skew negacyc
length best dist nbr best dist nbr
2 2* 2 2* 4
4 3* 32 3* 6
6 4* 18 4* 36
8 5* 192 5* 90
10 6* 144 6* 288
12 6* 5 408 6* 486
14 7* 1 404 7* 2 808
16 7 17 280 8* 6 642
18 9* 13 122 9* 26 244
20 9 165 888 9 39 852
22 9* 118 584 9* 237 168
24 10* 2 628 288 10* 590 490
Euclidean LCD
skew cyc skew negacyc
length best dist nbr best dist nbr
2 2* 2 2* 4
4 3* 32 3* 6
6 4* 18 4* 36
8 5* 192 5* 90
10 6* 144 6* 288
12 6* 5 408 6* 486
14 7* 1 404 7* 2 808
16 7 17 280 8* 6 642
18 9* 13 122 9* 26 244
20 9 165 888 9 39 852
22 9* 118 584 9* 237 168
24 10* 2 628 288 10* 590 490
Table 4.  Best minimum distances and numbers of LCD $ [2k,k] $ skew codes of length $ \leq 24 $ over $ {\mathbb F}_9 $ with skew generator polynomial not divisible by a central polynomial
Hermitian LCD
skew cyc skew negacyc
length best dist nbr best dist nbr
2 2* 4 0 0
4 0 0 3* 6
6 4* 361 0 0
8 0 0 5* 90
10 6* 288 0 0
12 0 0 6* 486
14 7* 2 808 0 0
16 0 0 8* 6 642
18 9* 26 244 0 0
20 0 0 10* 39 852
22 9* 237 168 0 0
24 0 0 10* 590 490
Hermitian LCD
skew cyc skew negacyc
length best dist nbr best dist nbr
2 2* 4 0 0
4 0 0 3* 6
6 4* 361 0 0
8 0 0 5* 90
10 6* 288 0 0
12 0 0 6* 486
14 7* 2 808 0 0
16 0 0 8* 6 642
18 9* 26 244 0 0
20 0 0 10* 39 852
22 9* 237 168 0 0
24 0 0 10* 590 490
[1]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[2]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[3]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[4]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[5]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[6]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[7]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[8]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[9]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[10]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[11]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[12]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[13]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (80)
  • HTML views (368)
  • Cited by (0)

[Back to Top]