\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An overview on skew constacyclic codes and their subclass of LCD codes

The third author is supported by the French government Investissements d'Avenir program ANR-11-LABX-0020-01
Abstract / Introduction Full Text(HTML) Figure(0) / Table(7) Related Papers Cited by
  • This paper is about a first characterization of LCD skew constacyclic codes and some constructions of LCD skew cyclic and skew negacyclic codes over $ \mathbb{F}_{p^2} $.

    Mathematics Subject Classification: 94B05, 12-08, 68W30, 12E15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Number of Euclidean and Hermitian LCD $ [2p,p]_{p^2} $ and $ [2p,p]_{p^2} $ MDS skew-cyclic codes for $ p = 3,5,7,11 $

    p nbr of Euclidean LCD skew cyc. nbr of Hermitian LCD skew cyc.
    $ [2p,p]_{p^2} $ $ [2p,p,p+1]_{p^2} $ $ [2p,p]_{p^2} $ $ [2p,p,p+1]_{p^2} $
    3 18 16 36 32
    5 3750 2412 3750 2412
    7 705984 39564 941192 52752
    11 259374246010 $ \geq 1 $ 311249095212 $ \geq 1 $
     | Show Table
    DownLoad: CSV

    Table 5.  Dimensions of MDS LCD skew codes over $ {\mathbb F}_9 $ with length $ n \leq 10 $ and dimension $ 1 < k < n-1 $

    MDS Euclidean LCD MDS Hermitian LCD
    length skew cyc skew nega skew cyc skew nega
    4 2 2 no 2
    6 3 3 3 no
    8 3, 4, 5 4 3, 5 4
    10 5 5 5 no
     | Show Table
    DownLoad: CSV

    Table 6.  Dimensions of MDS LCD skew codes over $ {\mathbb F}_{25} $ with length $ n \leq 18 $ and dimension $ 1 < k < n-1 $

    MDS Euclidean LCD MDS Hermitian LCD
    length skew cyc skew nega skew cyc skew nega
    4 2 2 no 2
    6 2, 3, 4 2, 3, 4 2, 3, 4 2, 4
    8 3, 4, 5 4 3, 5 4
    10 5 5 5 no
    12 3, 5, 6, 7, 9 6 3, 5, 7, 9 6
    14 7 7 7 no
    16 7, 8, 9 no 7, 9 no
    18 9 9 9 no
     | Show Table
    DownLoad: CSV

    Table 7.  Dimensions of MDS LCD skew codes over $ {\mathbb F}_{49} $ with length $ n \leq 16 $ and dimension $ 1 < k < n-1 $

    MDS Euclidean LCD MDS Hermitian LCD
    length skew cyc skew nega skew cyc skew nega
    4 2 2 no 2
    6 2, 3, 4 2, 3, 4 2, 3, 4 2, 4
    8 3, 4, 5 2, 4, 6 3, 5 2, 4, 6
    10 4, 5, 6 4, 5, 6 4, 5, 6 4, 6
    12 3, 5, 6, 7, 9 6 3, 5, 7, 9 6
    14 7 7 7 no
    16 3, 5, 7, 8, 9, 11, 13 8 3, 5, 7, 9, 11, 13 8
     | Show Table
    DownLoad: CSV

    Table 2.  Best minimum distances and numbers of Euclidean LCD $ [2k,k] $ skew cyclic codes of length $ \leq 48 $ over $ {\mathbb F}_4 $ with skew generator polynomial not divisible by a central polynomial

    Euclidean LCD skew cyc. Euclidean LCD skew cyc.
    length best dist nbr length best dist nbr
    2 2* 2 26 9 8 064
    4 3* 4 28 11* 18 432
    6 4* 4 30 12* 13 056
    8 4* 16 32 10 65 536
    10 5* 24 34 11* 115 200
    12 5 32 36 11 114 688
    14 6* 144 38 12* 523 264
    16 6 256 40 12* 786 432
    18 7 224 42 12 1 198 080
    20 8* 768 44 13 4 063 232
    22 8* 1 984 46 14* 8 392 704
    24 9* 2 048 48 14* 8 388 608
     | Show Table
    DownLoad: CSV

    Table 3.  Best minimum distances and numbers of LCD $ [2k,k] $ skew codes of length $ \leq 24 $ over $ {\mathbb F}_9 $ with skew generator polynomial not divisible by a central polynomial

    Euclidean LCD
    skew cyc skew negacyc
    length best dist nbr best dist nbr
    2 2* 2 2* 4
    4 3* 32 3* 6
    6 4* 18 4* 36
    8 5* 192 5* 90
    10 6* 144 6* 288
    12 6* 5 408 6* 486
    14 7* 1 404 7* 2 808
    16 7 17 280 8* 6 642
    18 9* 13 122 9* 26 244
    20 9 165 888 9 39 852
    22 9* 118 584 9* 237 168
    24 10* 2 628 288 10* 590 490
     | Show Table
    DownLoad: CSV

    Table 4.  Best minimum distances and numbers of LCD $ [2k,k] $ skew codes of length $ \leq 24 $ over $ {\mathbb F}_9 $ with skew generator polynomial not divisible by a central polynomial

    Hermitian LCD
    skew cyc skew negacyc
    length best dist nbr best dist nbr
    2 2* 4 0 0
    4 0 0 3* 6
    6 4* 361 0 0
    8 0 0 5* 90
    10 6* 288 0 0
    12 0 0 6* 486
    14 7* 2 808 0 0
    16 0 0 8* 6 642
    18 9* 26 244 0 0
    20 0 0 10* 39 852
    22 9* 237 168 0 0
    24 0 0 10* 590 490
     | Show Table
    DownLoad: CSV
  • [1] A. BatoulK. Guenda and T. A. Gulliver, Some constacyclic codes over finite chain rings, Adv. Math. Commun., 10 (2016), 683-694.  doi: 10.3934/amc.2016034.
    [2] D. BoucherW. Geiselmann and F. Ulmer, Skew-cyclic codes, Appl. Algebra Engrg. Comm. Comput., 18 (2007), 379-389.  doi: 10.1007/s00200-007-0043-z.
    [3] D. Boucher and F. Ulmer, A note on the dual codes of module skew codes, in Cryptography and Coding, Vol. 7089, Lecture Notes in Comput. Sci., 2011,230–243. doi: 10.1007/978-3-642-25516-8_14.
    [4] D. Boucher and F. Ulmer, Self-dual skew codes and factorization of skew polynomials, J. Symbolic. Comput., 60 (2014), 47-61.  doi: 10.1016/j.jsc.2013.10.003.
    [5] D. Boucher, Construction and number of self-dual skew codes over $ \mathbb{F}_{p^{2}} $, Adv. Math. Commun., 10 (2016), 4,765–795. doi: 10.3934/amc.2016040.
    [6] D. Boucher, A first step towards the skew duadic codes, Adv. Math. Commun., 12 (2018), 3,553–577. doi: 10.3934/amc.2018033.
    [7] C. Carlet, S. Mesnager, C. Tang and Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr. 86 (2018), 11, 2605–2618. doi: 10.1007/s10623-018-0463-8.
    [8] N. L. Fogarty, On Skew-Constacyclic Codes, Ph.D dissertation, University of Kentucky, 2016.
    [9] M. Giesbrecht, Factoring in skew-polynomial rings over finite fields, J. Symbolic Comput., 26 (1998), 463-486.  doi: 10.1006/jsco.1998.0224.
    [10] C. GüneriaB. Özkayaa and P. Solé, Quasi-cyclic complementary dual codes, Finite Fields Appl., 42 (2016), 67-80.  doi: 10.1016/j.ffa.2016.07.005.
    [11] C. Li, Hermitian LCD codes from cyclic codes, Des. Codes Cryptogr., 86 (2018), 2261-2278.  doi: 10.1007/s10623-017-0447-0.
    [12] C. LiC. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inform. Theory, 63 (2017), 4344-4356.  doi: 10.1109/TIT.2017.2672961.
    [13] F. J. MacWilliams, Combinatorial Properties of Elementary Abelian Groups, Ph.D. thesis, Radcliffe College, Cambridge, MA, 1962.
    [14] J. L. Massey and X. Yang, The condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994), 391-393.  doi: 10.1016/0012-365X(94)90283-6.
    [15] J. L. Massey, Linear codes with complementary duals, Discrete Math., 106-107 (1992), 337-342.  doi: 10.1016/0012-365X(92)90563-U.
    [16] J. L. Massey, Reversible codes, Information and Control, 7 (1964), 369-380.  doi: 10.1016/S0019-9958(64)90438-3.
    [17] B. R. McDonald, Finite rings with identity, in Pure and Applied Mathematics, Vol. 28, Marcel Dekker Inc., New York, 1974.
    [18] R. W. K. Odoni, On additive polynomials over a finite field, Proc. Edinburgh Math. Soc., 42 (1999), 1-16.  doi: 10.1017/S0013091500019970.
    [19] O. Ore, Theory of non-commutative polynomials, Ann. Math., 34 (1933), 480-508.  doi: 10.2307/1968173.
    [20] B. PangS. Zhu and J. Li, On LCD repeated-root cyclic codes over finite fields, J. Appl. Math. Comput., 56 (2018), 625-635.  doi: 10.1007/s12190-017-1118-z.
    [21] A. Sharma and T. Kaur, Enumeration formulae for self-dual, self-orthogonal and complementary-dual quasi-cyclic codes over finite fields, Cryptogr. Commun., 10 (2018), 401-435.  doi: 10.1007/s12095-017-0228-7.
  • 加载中

Tables(7)

SHARE

Article Metrics

HTML views(3359) PDF downloads(319) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return