[1]
|
A. Batoul, K. Guenda and T. A. Gulliver, Some constacyclic codes over finite chain rings, Adv. Math. Commun., 10 (2016), 683-694.
doi: 10.3934/amc.2016034.
|
[2]
|
D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes, Appl. Algebra Engrg. Comm. Comput., 18 (2007), 379-389.
doi: 10.1007/s00200-007-0043-z.
|
[3]
|
D. Boucher and F. Ulmer, A note on the dual codes of module skew codes, in Cryptography and Coding, Vol. 7089, Lecture Notes in Comput. Sci., 2011,230–243.
doi: 10.1007/978-3-642-25516-8_14.
|
[4]
|
D. Boucher and F. Ulmer, Self-dual skew codes and factorization of skew polynomials, J. Symbolic. Comput., 60 (2014), 47-61.
doi: 10.1016/j.jsc.2013.10.003.
|
[5]
|
D. Boucher, Construction and number of self-dual skew codes over $ \mathbb{F}_{p^{2}} $, Adv. Math. Commun., 10 (2016), 4,765–795.
doi: 10.3934/amc.2016040.
|
[6]
|
D. Boucher, A first step towards the skew duadic codes, Adv. Math. Commun., 12 (2018), 3,553–577.
doi: 10.3934/amc.2018033.
|
[7]
|
C. Carlet, S. Mesnager, C. Tang and Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr. 86 (2018), 11, 2605–2618.
doi: 10.1007/s10623-018-0463-8.
|
[8]
|
N. L. Fogarty, On Skew-Constacyclic Codes, Ph.D dissertation, University of Kentucky, 2016.
|
[9]
|
M. Giesbrecht, Factoring in skew-polynomial rings over finite fields, J. Symbolic Comput., 26 (1998), 463-486.
doi: 10.1006/jsco.1998.0224.
|
[10]
|
C. Güneria, B. Özkayaa and P. Solé, Quasi-cyclic complementary dual codes, Finite Fields Appl., 42 (2016), 67-80.
doi: 10.1016/j.ffa.2016.07.005.
|
[11]
|
C. Li, Hermitian LCD codes from cyclic codes, Des. Codes Cryptogr., 86 (2018), 2261-2278.
doi: 10.1007/s10623-017-0447-0.
|
[12]
|
C. Li, C. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inform. Theory, 63 (2017), 4344-4356.
doi: 10.1109/TIT.2017.2672961.
|
[13]
|
F. J. MacWilliams, Combinatorial Properties of Elementary Abelian Groups, Ph.D. thesis, Radcliffe College, Cambridge, MA, 1962.
|
[14]
|
J. L. Massey and X. Yang, The condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994), 391-393.
doi: 10.1016/0012-365X(94)90283-6.
|
[15]
|
J. L. Massey, Linear codes with complementary duals, Discrete Math., 106-107 (1992), 337-342.
doi: 10.1016/0012-365X(92)90563-U.
|
[16]
|
J. L. Massey, Reversible codes, Information and Control, 7 (1964), 369-380.
doi: 10.1016/S0019-9958(64)90438-3.
|
[17]
|
B. R. McDonald, Finite rings with identity, in Pure and Applied Mathematics, Vol. 28, Marcel Dekker Inc., New York, 1974.
|
[18]
|
R. W. K. Odoni, On additive polynomials over a finite field, Proc. Edinburgh Math. Soc., 42 (1999), 1-16.
doi: 10.1017/S0013091500019970.
|
[19]
|
O. Ore, Theory of non-commutative polynomials, Ann. Math., 34 (1933), 480-508.
doi: 10.2307/1968173.
|
[20]
|
B. Pang, S. Zhu and J. Li, On LCD repeated-root cyclic codes over finite fields, J. Appl. Math. Comput., 56 (2018), 625-635.
doi: 10.1007/s12190-017-1118-z.
|
[21]
|
A. Sharma and T. Kaur, Enumeration formulae for self-dual, self-orthogonal and complementary-dual quasi-cyclic codes over finite fields, Cryptogr. Commun., 10 (2018), 401-435.
doi: 10.1007/s12095-017-0228-7.
|