doi: 10.3934/amc.2020087

Correlation distribution of a sequence family generalizing some sequences of Trachtenberg

1. 

Department of Mathematics and Institute of Applied Mathematics, Middle East Technical University, 06800, Ankara, Turkey

2. 

Department of Business Administration, Karabük University, 78050, Karabük, Turkey

3. 

Institute of Applied Mathematics, Middle East Technical University, 06800, Ankara, Turkey

* Corresponding author: Eda Tekin

Received  November 2019 Published  June 2020

In this paper, we give a classification of a sequence family, over arbitrary characteristic, adding linear trace terms to the function $ g(x) = \mathrm{Tr}(x^d) $, where $ d = p^{2k}-p^k+1 $, first introduced by Trachtenberg. The family has $ p^n+1 $ cyclically distinct sequences with period $ p^n-1 $. We compute the exact correlation distribution of the function $ g(x) $ with linear $ m $-sequences and amongst themselves. The cross-correlation values are obtained as $ C_{i,j}(\tau) \in \{-1,-1\pm p^{\frac{n+e}{2}},-1+p^n\} $.

Citation: Ferruh Özbudak, Eda Tekin. Correlation distribution of a sequence family generalizing some sequences of Trachtenberg. Advances in Mathematics of Communications, doi: 10.3934/amc.2020087
References:
[1]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. Ⅰ. The user language, J. Symbolic Comput., 24 (1997), 235–-265. doi: 10.1006/jsco.1996.0125.  Google Scholar

[2]

S. Boztaş and P. V. Kumar, Binary sequences with Gold-like correlation but larger linear span, IEEE Trans. Inform. Theory, 40 (1994), 532-537.  doi: 10.1109/18.312181.  Google Scholar

[3]

S. BoztaşF. Özbudak and E. Tekin, Explicit full correlation distribution of sequence families using plateaued functions, IEEE Trans. Inform. Theory, 64 (2018), 2858-2875.  doi: 10.1109/TIT.2017.2789208.  Google Scholar

[4]

E. Çakçak and F. Özbudak, Some Artin-Schreier type function fields over finite fields with prescribed genus and number of rational places, J. Pure Appl. Algebra, 210 (2007), 113-135.  doi: 10.1016/j.jpaa.2006.08.007.  Google Scholar

[5]

J. F. Dillon, Multiplicative difference sets via additive characters, Des. Codes Cryptogr., 17 (1999), 225-235.  doi: 10.1023/A:1026435428030.  Google Scholar

[6]

R. Gold, Optimal binary sequences for spread spectrum multiplexing, IEEE Trans. Inform. Theory, 13 (1967), 154-156.  doi: 10.1109/TIT.1967.1054048.  Google Scholar

[7]

R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions (corresp.), IEEE Trans. Inform. Theory, 14 (1968), 154-156.  doi: 10.1109/TIT.1968.1054106.  Google Scholar

[8]

T. Helleseth, Some results about the cross-correlation function between two maximal linear sequences, Discrete Math., 16 (1976), 209-232.  doi: 10.1016/0012-365X(76)90100-X.  Google Scholar

[9]

T. Helleseth and P. V. Kumar, Sequences with low correlation, in Handbook of Coding Theory, Vol. II, North-Holland, Amsterdam, 1998.  Google Scholar

[10]

T. Kasami, The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes, Information and Control, 18 (1971), 369-394.  doi: 10.1016/S0019-9958(71)90473-6.  Google Scholar

[11]

R. Lidl and H. Niederreiter, Sequences with low correlation, in Finite Fields, Vol. 20, Cambridge University Press, Cambridge, 1997. Google Scholar

[12]

Y. Niho, Multi-Valued Cross-Correlation Functions Between Two Maximal Linear Recursive Sequences, Ph.D thesis, University of Southern California, 1972. Google Scholar

[13]

X. Tang, T. Helleseth, L. Hu and W. Jiang, A new family of Gold-like sequences, Sequences, Subsequences, and Consequences, Lecture Notes in Comput. Sci., Vol. 4893, Springer, Berlin, 2007, 62–69. doi: 10.1007/978-3-540-77404-4_6.  Google Scholar

[14]

H. M. Trachtenberg, On the Cross-Correlation Function of Maximal Linear Recurring Sequences, Ph.D thesis, University of Southern California, 1970. Google Scholar

show all references

References:
[1]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. Ⅰ. The user language, J. Symbolic Comput., 24 (1997), 235–-265. doi: 10.1006/jsco.1996.0125.  Google Scholar

[2]

S. Boztaş and P. V. Kumar, Binary sequences with Gold-like correlation but larger linear span, IEEE Trans. Inform. Theory, 40 (1994), 532-537.  doi: 10.1109/18.312181.  Google Scholar

[3]

S. BoztaşF. Özbudak and E. Tekin, Explicit full correlation distribution of sequence families using plateaued functions, IEEE Trans. Inform. Theory, 64 (2018), 2858-2875.  doi: 10.1109/TIT.2017.2789208.  Google Scholar

[4]

E. Çakçak and F. Özbudak, Some Artin-Schreier type function fields over finite fields with prescribed genus and number of rational places, J. Pure Appl. Algebra, 210 (2007), 113-135.  doi: 10.1016/j.jpaa.2006.08.007.  Google Scholar

[5]

J. F. Dillon, Multiplicative difference sets via additive characters, Des. Codes Cryptogr., 17 (1999), 225-235.  doi: 10.1023/A:1026435428030.  Google Scholar

[6]

R. Gold, Optimal binary sequences for spread spectrum multiplexing, IEEE Trans. Inform. Theory, 13 (1967), 154-156.  doi: 10.1109/TIT.1967.1054048.  Google Scholar

[7]

R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions (corresp.), IEEE Trans. Inform. Theory, 14 (1968), 154-156.  doi: 10.1109/TIT.1968.1054106.  Google Scholar

[8]

T. Helleseth, Some results about the cross-correlation function between two maximal linear sequences, Discrete Math., 16 (1976), 209-232.  doi: 10.1016/0012-365X(76)90100-X.  Google Scholar

[9]

T. Helleseth and P. V. Kumar, Sequences with low correlation, in Handbook of Coding Theory, Vol. II, North-Holland, Amsterdam, 1998.  Google Scholar

[10]

T. Kasami, The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes, Information and Control, 18 (1971), 369-394.  doi: 10.1016/S0019-9958(71)90473-6.  Google Scholar

[11]

R. Lidl and H. Niederreiter, Sequences with low correlation, in Finite Fields, Vol. 20, Cambridge University Press, Cambridge, 1997. Google Scholar

[12]

Y. Niho, Multi-Valued Cross-Correlation Functions Between Two Maximal Linear Recursive Sequences, Ph.D thesis, University of Southern California, 1972. Google Scholar

[13]

X. Tang, T. Helleseth, L. Hu and W. Jiang, A new family of Gold-like sequences, Sequences, Subsequences, and Consequences, Lecture Notes in Comput. Sci., Vol. 4893, Springer, Berlin, 2007, 62–69. doi: 10.1007/978-3-540-77404-4_6.  Google Scholar

[14]

H. M. Trachtenberg, On the Cross-Correlation Function of Maximal Linear Recurring Sequences, Ph.D thesis, University of Southern California, 1970. Google Scholar

[1]

Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050

[2]

Samuel T. Blake, Thomas E. Hall, Andrew Z. Tirkel. Arrays over roots of unity with perfect autocorrelation and good ZCZ cross-correlation. Advances in Mathematics of Communications, 2013, 7 (3) : 231-242. doi: 10.3934/amc.2013.7.231

[3]

Xiaohui Liu, Jinhua Wang, Dianhua Wu. Two new classes of binary sequence pairs with three-level cross-correlation. Advances in Mathematics of Communications, 2015, 9 (1) : 117-128. doi: 10.3934/amc.2015.9.117

[4]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[5]

Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199

[6]

Yu Zheng, Li Peng, Teturo Kamae. Characterization of noncorrelated pattern sequences and correlation dimensions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5085-5103. doi: 10.3934/dcds.2018223

[7]

Wei-Wen Hu. Integer-valued Alexis sequences with large zero correlation zone. Advances in Mathematics of Communications, 2017, 11 (3) : 445-452. doi: 10.3934/amc.2017037

[8]

Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151-159. doi: 10.3934/amc.2017009

[9]

Jian Liu, Sihem Mesnager, Lusheng Chen. Variation on correlation immune Boolean and vectorial functions. Advances in Mathematics of Communications, 2016, 10 (4) : 895-919. doi: 10.3934/amc.2016048

[10]

Chunlei Xie, Yujuan Sun. Construction and assignment of orthogonal sequences and zero correlation zone sequences for applications in CDMA systems. Advances in Mathematics of Communications, 2020, 14 (1) : 1-9. doi: 10.3934/amc.2020001

[11]

Mariusz Lemańczyk, Clemens Müllner. Automatic sequences are orthogonal to aperiodic multiplicative functions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6877-6918. doi: 10.3934/dcds.2020260

[12]

Yu Zhou. On the distribution of auto-correlation value of balanced Boolean functions. Advances in Mathematics of Communications, 2013, 7 (3) : 335-347. doi: 10.3934/amc.2013.7.335

[13]

Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209-222. doi: 10.3934/amc.2014.8.209

[14]

Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359-373. doi: 10.3934/amc.2014.8.359

[15]

Wenbing Chen, Jinquan Luo, Yuansheng Tang, Quanquan Liu. Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence. Advances in Mathematics of Communications, 2015, 9 (3) : 375-390. doi: 10.3934/amc.2015.9.375

[16]

Claude Carlet, Khoongming Khoo, Chu-Wee Lim, Chuan-Wen Loe. On an improved correlation analysis of stream ciphers using multi-output Boolean functions and the related generalized notion of nonlinearity. Advances in Mathematics of Communications, 2008, 2 (2) : 201-221. doi: 10.3934/amc.2008.2.201

[17]

Yang Yang, Xiaohu Tang, Guang Gong. New almost perfect, odd perfect, and perfect sequences from difference balanced functions with d-form property. Advances in Mathematics of Communications, 2017, 11 (1) : 67-76. doi: 10.3934/amc.2017002

[18]

Lassi Roininen, Markku S. Lehtinen, Sari Lasanen, Mikko Orispää, Markku Markkanen. Correlation priors. Inverse Problems & Imaging, 2011, 5 (1) : 167-184. doi: 10.3934/ipi.2011.5.167

[19]

Vladimír Špitalský. Local correlation entropy. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5711-5733. doi: 10.3934/dcds.2018249

[20]

Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505-513. doi: 10.3934/amc.2018029

2019 Impact Factor: 0.734

Article outline

[Back to Top]