doi: 10.3934/amc.2020088

Infinite families of 2-designs from a class of non-binary Kasami cyclic codes

1. 

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, China

2. 

Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China

3. 

School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610000, China

* Corresponding author: Xiaoni Du

Received  December 2019 Revised  February 2020 Published  June 2020

Fund Project: The second author is supported by NSFC grant No. 61772022. The third author is supported by NSFC grant No. 11971395

Combinatorial $ t $-designs have been an important research subject for many years, as they have wide applications in coding theory, cryptography, communications and statistics. The interplay between coding theory and $ t $-designs has been attracted a lot of attention for both directions. It is well known that a linear code over any finite field can be derived from the incidence matrix of a $ t $-design, meanwhile, that the supports of all codewords with a fixed weight in a code also may hold a $ t $-design. In this paper, by determining the weight distribution of a class of linear codes derived from non-binary Kasami cyclic codes, we obtain infinite families of $ 2 $-designs from the supports of all codewords with a fixed weight in these codes, and calculate their parameters explicitly.

Citation: Rong Wang, Xiaoni Du, Cuiling Fan. Infinite families of 2-designs from a class of non-binary Kasami cyclic codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2020088
References:
[1] E. F. Assmus Jr. and J. D. Key, Designs and Their Codes, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.  Google Scholar
[2]

E. F. Assmus Jr. and H. F. Mattson Jr, New $5$-designs, J. Combinatorial Theory, 6 (1969), 122-152.  doi: 10.1016/S0021-9800(69)80115-8.  Google Scholar

[3]

E. F. Assmus Jr. and H. F. Mattson Jr, Coding and combinatorics, SIAM Rev., 16 (1974), 349-388.  doi: 10.1137/1016056.  Google Scholar

[4]

M. Antweiler and L. Bömer, Complex sequences over GF$ {(p^M)} $ with a two-level autocorrelation function and a large linear span, IEEE Trans. Inform. Theory, 38 (1992), 120-130.  doi: 10.1109/18.108256.  Google Scholar

[5]

T. Beth, D. Jungnickel and H. Lenz, Design Theory, Vol. II. Encyclopedia of Mathematics and its Applications, Vol. 78, 2nd edition, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139507660.003.  Google Scholar

[6]

C. Ding, Designs from Linear Codes, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. doi: 10.1142/11101.  Google Scholar

[7]

C. Ding, Infinite families of $3$-designs from a type of five-weight code, Des. Codes Cryptogr., 86 (2018), 703-719.  doi: 10.1007/s10623-017-0352-6.  Google Scholar

[8]

C. Ding and C. Li, Infinite families of $2$-designs and $3$-designs from linear codes, Discrete Math., 340 (2017), 2415-2431.  doi: 10.1016/j.disc.2017.05.013.  Google Scholar

[9]

K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[10]

X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of linear codes, preprint, arXiv: 1903.07459. Google Scholar

[11]

X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of binary cyclic codes with three nonzeros, preprint, arXiv: 1903.08153. Google Scholar

[12]

X. DuR. Wang and C. Fan, Infinite families of $2$-designs from a class of cyclic codes, J. Comb. Des., 28 (2020), 157-170.  doi: 10.1002/jcd.21682.  Google Scholar

[13]

R. W. Fitzgerald and J. L. Yucas, Sums of Gauss sums and weights of irreducible codes, Finite Fields Appl., 11 (2005), 89-110.  doi: 10.1016/j.ffa.2004.06.002.  Google Scholar

[14] W. C. Huffman and V. Pless, Fundamentals of Error-correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[15]

K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, $2^nd$ edition, Graduate Texts in Mathematics, Vol. 84, Springer-Verlag, New York, 1990.  Google Scholar

[16]

T. KasamiS. Lin and W. W. Peterson, Some results on cyclic codes which are invariant under the affine group and their applications, Information and Control, 11 (1967), 475-496.  doi: 10.1016/S0019-9958(67)90691-2.  Google Scholar

[17]

J. Luo, Y. Tang, and H. Wang, Exponential sums, cycle codees and sequences: the odd characteristic Kasami case, preprint, arXiv: 0902.4508v1 [cs.IT]. Google Scholar

[18]

R. Lidl and H. Niederreiter, Finite Fields, 2nd edition, Encyclopedia of Mathematics and its Applications, Vol. 20, Cambridge University Press, Cambridge, 1997. Google Scholar

[19]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, I, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Google Scholar

[20]

C. Reid and A. Rosa, Steiner systems $ {S} (2, 4, v) $-a survey, The Electronic Journal of Combinatorics, 18 (2010), 1–34. https://www.researchgate.net/publication/266996333. doi: 10.37236/39.  Google Scholar

[21]

J. Serrin, C. J. Colbourn and R. Mathon, Steiner systems, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, (2006), 128–135. https://www.researchgate.net/publication/329786723. Google Scholar

[22]

V. D. Tonchev, Codes and designs, in Handbook of Coding Theory, Vol. I, II North-Holland, Amsterdam, (1998), 1229–1267. https://www.researchgate.net/publication/268549395.  Google Scholar

[23]

V. D. Tonchev, Codes, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, Boca Raton, FL, 2007.  Google Scholar

[24]

M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, J. Number Theory, 55 (1995), 145-159.  doi: 10.1006/jnth.1995.1133.  Google Scholar

show all references

References:
[1] E. F. Assmus Jr. and J. D. Key, Designs and Their Codes, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.  Google Scholar
[2]

E. F. Assmus Jr. and H. F. Mattson Jr, New $5$-designs, J. Combinatorial Theory, 6 (1969), 122-152.  doi: 10.1016/S0021-9800(69)80115-8.  Google Scholar

[3]

E. F. Assmus Jr. and H. F. Mattson Jr, Coding and combinatorics, SIAM Rev., 16 (1974), 349-388.  doi: 10.1137/1016056.  Google Scholar

[4]

M. Antweiler and L. Bömer, Complex sequences over GF$ {(p^M)} $ with a two-level autocorrelation function and a large linear span, IEEE Trans. Inform. Theory, 38 (1992), 120-130.  doi: 10.1109/18.108256.  Google Scholar

[5]

T. Beth, D. Jungnickel and H. Lenz, Design Theory, Vol. II. Encyclopedia of Mathematics and its Applications, Vol. 78, 2nd edition, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139507660.003.  Google Scholar

[6]

C. Ding, Designs from Linear Codes, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. doi: 10.1142/11101.  Google Scholar

[7]

C. Ding, Infinite families of $3$-designs from a type of five-weight code, Des. Codes Cryptogr., 86 (2018), 703-719.  doi: 10.1007/s10623-017-0352-6.  Google Scholar

[8]

C. Ding and C. Li, Infinite families of $2$-designs and $3$-designs from linear codes, Discrete Math., 340 (2017), 2415-2431.  doi: 10.1016/j.disc.2017.05.013.  Google Scholar

[9]

K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[10]

X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of linear codes, preprint, arXiv: 1903.07459. Google Scholar

[11]

X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of binary cyclic codes with three nonzeros, preprint, arXiv: 1903.08153. Google Scholar

[12]

X. DuR. Wang and C. Fan, Infinite families of $2$-designs from a class of cyclic codes, J. Comb. Des., 28 (2020), 157-170.  doi: 10.1002/jcd.21682.  Google Scholar

[13]

R. W. Fitzgerald and J. L. Yucas, Sums of Gauss sums and weights of irreducible codes, Finite Fields Appl., 11 (2005), 89-110.  doi: 10.1016/j.ffa.2004.06.002.  Google Scholar

[14] W. C. Huffman and V. Pless, Fundamentals of Error-correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[15]

K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, $2^nd$ edition, Graduate Texts in Mathematics, Vol. 84, Springer-Verlag, New York, 1990.  Google Scholar

[16]

T. KasamiS. Lin and W. W. Peterson, Some results on cyclic codes which are invariant under the affine group and their applications, Information and Control, 11 (1967), 475-496.  doi: 10.1016/S0019-9958(67)90691-2.  Google Scholar

[17]

J. Luo, Y. Tang, and H. Wang, Exponential sums, cycle codees and sequences: the odd characteristic Kasami case, preprint, arXiv: 0902.4508v1 [cs.IT]. Google Scholar

[18]

R. Lidl and H. Niederreiter, Finite Fields, 2nd edition, Encyclopedia of Mathematics and its Applications, Vol. 20, Cambridge University Press, Cambridge, 1997. Google Scholar

[19]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, I, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Google Scholar

[20]

C. Reid and A. Rosa, Steiner systems $ {S} (2, 4, v) $-a survey, The Electronic Journal of Combinatorics, 18 (2010), 1–34. https://www.researchgate.net/publication/266996333. doi: 10.37236/39.  Google Scholar

[21]

J. Serrin, C. J. Colbourn and R. Mathon, Steiner systems, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, (2006), 128–135. https://www.researchgate.net/publication/329786723. Google Scholar

[22]

V. D. Tonchev, Codes and designs, in Handbook of Coding Theory, Vol. I, II North-Holland, Amsterdam, (1998), 1229–1267. https://www.researchgate.net/publication/268549395.  Google Scholar

[23]

V. D. Tonchev, Codes, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, Boca Raton, FL, 2007.  Google Scholar

[24]

M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, J. Number Theory, 55 (1995), 145-159.  doi: 10.1006/jnth.1995.1133.  Google Scholar

Table 1.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = d $ is odd
Weight Multiplicity
$ 0 $ $ 1 $
$ (p-1)(p^{m-1}-p^{s-1}) $ $ \frac{1}{2}p^{m+d}(p^s+1)(p^m-1)/(p^d+1) $
$ p^{m-1}(p-1)+p^{s-1} $ $ \frac{1}{2}p^{m+d}(p-1)(p^s+1)(p^m-1)/(p^d+1) $
$ (p-1)(p^{m-1}+p^{s-1}) $ $ \frac{p^{m+d}(p^m-2p^{m-d}+1)(p^s-1)}{2(p^d-1)} $
$ p^{m-1}(p-1)-p^{s-1} $ $ \frac{p^{m+d}(p-1)(p^m-2p^{m-d}+1)(p^s-1)}{2(p^d-1)} $
$ p^{m-1}(p-1)\pm (-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ \frac{1}{2}p^{3s-2d}(p-1)(p^m-1) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ p^{m-2d}(p^{s-d}-1)(p^m-1)/(p^{2d}-1) $
$ p^{m-1}(p-1)-p^{s+d-1} $ $ \frac{p^{m-2d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-2d-1}+p^{3s-3d} $
$ -p^{m-2d}+1)(p^m-1) $
$ p^m $ $ p-1 $
Weight Multiplicity
$ 0 $ $ 1 $
$ (p-1)(p^{m-1}-p^{s-1}) $ $ \frac{1}{2}p^{m+d}(p^s+1)(p^m-1)/(p^d+1) $
$ p^{m-1}(p-1)+p^{s-1} $ $ \frac{1}{2}p^{m+d}(p-1)(p^s+1)(p^m-1)/(p^d+1) $
$ (p-1)(p^{m-1}+p^{s-1}) $ $ \frac{p^{m+d}(p^m-2p^{m-d}+1)(p^s-1)}{2(p^d-1)} $
$ p^{m-1}(p-1)-p^{s-1} $ $ \frac{p^{m+d}(p-1)(p^m-2p^{m-d}+1)(p^s-1)}{2(p^d-1)} $
$ p^{m-1}(p-1)\pm (-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ \frac{1}{2}p^{3s-2d}(p-1)(p^m-1) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ p^{m-2d}(p^{s-d}-1)(p^m-1)/(p^{2d}-1) $
$ p^{m-1}(p-1)-p^{s+d-1} $ $ \frac{p^{m-2d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-2d-1}+p^{3s-3d} $
$ -p^{m-2d}+1)(p^m-1) $
$ p^m $ $ p-1 $
Table 2.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = d $ is even
Weight Multiplicity
$ 0 $ $ 1 $
$ p^{s-1}(p-1)(p^s-1) $ $ \frac{1}{2}p^{m+d}(p^s+1)(p^m-1)/(p^d+1) $
$ p^{s-1}(p^{s+1}-p^s+1) $ $ \frac{1}{2}p^{m+d}(p-1)(p^s+1)(p^m-1)/(p^d+1) $
$ p^{s-1}(p-1)(p^s+1) $ $ p^{m+d}(p^m-2p^{m-d}+1)(p^s-1)/2(p^d-1) $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ p^{m+d}(p-1)(p^m-2p^{m-d}+1)(p^s-1)/2(p^d-1) $
$ p^{s+\frac{d}{2}-1}(p-1)(p^{s-\frac{d}{2}} \pm 1) $ $ \frac{1}{2}p^{3s-2d}(p^m-1) $
$ p^{s+\frac{d}{2}-1}(p^{s-\frac{d}{2}+1}-p^{s-\frac{d}{2}}\pm 1) $ $ \frac{1}{2}p^{3s-2d}(p-1)(p^m-1) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ p^{m-2d}(p^{s-d}-1)(p^m-1)/(p^{2d}-1) $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}-1) $ $ \frac{p^{m-2d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d} $
$ +1)(p^m-1) $
$ p^m $ $ p-1 $
Weight Multiplicity
$ 0 $ $ 1 $
$ p^{s-1}(p-1)(p^s-1) $ $ \frac{1}{2}p^{m+d}(p^s+1)(p^m-1)/(p^d+1) $
$ p^{s-1}(p^{s+1}-p^s+1) $ $ \frac{1}{2}p^{m+d}(p-1)(p^s+1)(p^m-1)/(p^d+1) $
$ p^{s-1}(p-1)(p^s+1) $ $ p^{m+d}(p^m-2p^{m-d}+1)(p^s-1)/2(p^d-1) $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ p^{m+d}(p-1)(p^m-2p^{m-d}+1)(p^s-1)/2(p^d-1) $
$ p^{s+\frac{d}{2}-1}(p-1)(p^{s-\frac{d}{2}} \pm 1) $ $ \frac{1}{2}p^{3s-2d}(p^m-1) $
$ p^{s+\frac{d}{2}-1}(p^{s-\frac{d}{2}+1}-p^{s-\frac{d}{2}}\pm 1) $ $ \frac{1}{2}p^{3s-2d}(p-1)(p^m-1) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ p^{m-2d}(p^{s-d}-1)(p^m-1)/(p^{2d}-1) $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}-1) $ $ \frac{p^{m-2d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d} $
$ +1)(p^m-1) $
$ p^m $ $ p-1 $
Table 3.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = 2d $
Weight Multiplicity
$ 0 $ $ 1 $
$ p^{s-1}(p-1)(p^s+1) $ $ \frac{p^{m+3d}(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^s-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ \frac{p^{m+3d}(p-1)(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^s-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+d-1}(p-1)(p^{s-d}-1) $ $ \frac{p^{m-d}(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}+1) $ $ \frac{p^{m-d}(p-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+2d-1}(p-1)(p^{s-2d}+1) $ $ \frac{p^{m-4d}(p^{s-d}-1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+2d-1}(p^{s-2d+1}-p^{s-2d}-1) $ $ \frac{p^{m-4d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{3s-4d} $
$ +p^{3s-5d}+p^{m-d}-2p^{m-2d}+p^{m-3d} $
$ -p^{m-4d}+1)(p^m-1) $
$ p^m $ $ p-1 $
Weight Multiplicity
$ 0 $ $ 1 $
$ p^{s-1}(p-1)(p^s+1) $ $ \frac{p^{m+3d}(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^s-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ \frac{p^{m+3d}(p-1)(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^s-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+d-1}(p-1)(p^{s-d}-1) $ $ \frac{p^{m-d}(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}+1) $ $ \frac{p^{m-d}(p-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+2d-1}(p-1)(p^{s-2d}+1) $ $ \frac{p^{m-4d}(p^{s-d}-1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+2d-1}(p^{s-2d+1}-p^{s-2d}-1) $ $ \frac{p^{m-4d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{3s-4d} $
$ +p^{3s-5d}+p^{m-d}-2p^{m-2d}+p^{m-3d} $
$ -p^{m-4d}+1)(p^m-1) $
$ p^m $ $ p-1 $
Table 4.  The value of $ T(a,b,c,h) $ when $ d' = d $ is odd ($ j\in \mathbb{F}_p $)
Value Corresponding Condition
$ p^{m-1}+\varepsilon p^{s-1}(p-1) $ $ S(a,b,c)=\varepsilon p^s\zeta_p^j\; \mathrm{and}\; h+j=0 $
$ p^{m-1}-\varepsilon p^{s-1} $ $ S(a,b,c)=\varepsilon p^s\zeta_p^j\; \mathrm{and}\; h+j\neq0 $
$ 0 $ $ S(a,b,c)= p^m\; \mathrm{and}\; h\neq0 $
$ p^{m-1}\pm(-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ S(a,b,c)=\varepsilon \sqrt{p^*}p^{s+\frac{d-1}{2}}\zeta_p^j\; \mathrm{and}\; \eta'(h+j)=\pm\varepsilon $
$ p^{m-1}-p^{s+d-1}(p-1) $ $ S(a,b,c)=-p^{s+d}\zeta_p^j \; \mathrm{and}\; h+j=0 $
$ p^{m-1}+p^{s+d-1} $ $ S(a,b,c) $ $ =-p^{s+d}\zeta_p^j \; \mathrm{and}\; h+j\neq0 $
$ p^{m-1} $ $ S(a,b,c)=0\; \mathrm{or}\; S(a,b,c)=\varepsilon\sqrt{p^*}\zeta_p^jp^{s+\frac{d-1}{2}}\; \mathrm{and} $
$ h+j = 0 $
$ p^m $ $ S(a,b,c)=p^m\; \mathrm{and}\; h = 0 $
Value Corresponding Condition
$ p^{m-1}+\varepsilon p^{s-1}(p-1) $ $ S(a,b,c)=\varepsilon p^s\zeta_p^j\; \mathrm{and}\; h+j=0 $
$ p^{m-1}-\varepsilon p^{s-1} $ $ S(a,b,c)=\varepsilon p^s\zeta_p^j\; \mathrm{and}\; h+j\neq0 $
$ 0 $ $ S(a,b,c)= p^m\; \mathrm{and}\; h\neq0 $
$ p^{m-1}\pm(-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ S(a,b,c)=\varepsilon \sqrt{p^*}p^{s+\frac{d-1}{2}}\zeta_p^j\; \mathrm{and}\; \eta'(h+j)=\pm\varepsilon $
$ p^{m-1}-p^{s+d-1}(p-1) $ $ S(a,b,c)=-p^{s+d}\zeta_p^j \; \mathrm{and}\; h+j=0 $
$ p^{m-1}+p^{s+d-1} $ $ S(a,b,c) $ $ =-p^{s+d}\zeta_p^j \; \mathrm{and}\; h+j\neq0 $
$ p^{m-1} $ $ S(a,b,c)=0\; \mathrm{or}\; S(a,b,c)=\varepsilon\sqrt{p^*}\zeta_p^jp^{s+\frac{d-1}{2}}\; \mathrm{and} $
$ h+j = 0 $
$ p^m $ $ S(a,b,c)=p^m\; \mathrm{and}\; h = 0 $
Table 5.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = d $ is odd
Value Multiplicity
$ (p-1)(p^{m-1}-p^{s-1}) $ $ M_1+(p-1)M_3 $
$ p^{m-1}(p-1)+p^{s-1} $ $ (p-1)M_1+(p-1)^2M_3 $
$ (p-1)(p^{m-1}+p^{s-1}) $ $ M_2+(p-1)M_4 $
$ p^{m-1}(p-1)-p^{s-1} $ $ (p-1)M_2+(p-1)^2M_4 $
$ p^{m-1}(p-1)\pm(-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ (p-1)M_5+\frac{(p-1)^2}{2}(M_{6,1}+M_{6,-1}) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ M_7+(p-1)M_8 $
$ p^{m-1}(p-1)-p^{s+d-1} $ $ (p-1)M_7+(p-1)^2M_8 $
$ p^{m-1}(p-1) $ $ pM_9+2M_5+(p-1)(M_{6,1}+M_{6,-1}) $
$ p^m $ $ p-1 $
Value Multiplicity
$ (p-1)(p^{m-1}-p^{s-1}) $ $ M_1+(p-1)M_3 $
$ p^{m-1}(p-1)+p^{s-1} $ $ (p-1)M_1+(p-1)^2M_3 $
$ (p-1)(p^{m-1}+p^{s-1}) $ $ M_2+(p-1)M_4 $
$ p^{m-1}(p-1)-p^{s-1} $ $ (p-1)M_2+(p-1)^2M_4 $
$ p^{m-1}(p-1)\pm(-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ (p-1)M_5+\frac{(p-1)^2}{2}(M_{6,1}+M_{6,-1}) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ M_7+(p-1)M_8 $
$ p^{m-1}(p-1)-p^{s+d-1} $ $ (p-1)M_7+(p-1)^2M_8 $
$ p^{m-1}(p-1) $ $ pM_9+2M_5+(p-1)(M_{6,1}+M_{6,-1}) $
$ p^m $ $ p-1 $
Table 6.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = d $ is even
Value Multiplicity
$ p^{s-1}(p-1)(p^s-1) $ $ M_1+(p-1)M_3 $
$ p^{s-1}(p^{s+1}-p^s+1) $ $ (p-1)M_1+(p-1)^2M_3 $
$ p^{s-1}(p-1)(p^s+1) $ $ M_2+(p-1)M_4 $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ (p-1)M_2+(p-1)^2M_4 $
$ p^{s+\frac{d}{2}-1}(p^{s-\frac{d}{2}+1}-p^{s-\frac{d}{2}}\pm1) $ $ (p-1)M_{5,\pm1}+(p-1)^2M_{6,\pm1} $
$ p^{s+\frac{d}{2}-1}(p-1)(p^{s-\frac{d}{2}}\pm1) $ $ M_{5,\mp1}+(p-1)M_{6,\mp1} $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ M_7+(p-1)M_8 $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}-1) $ $ (p-1)M_7+(p-1)^2M_8 $
$ p^{m-1}(p-1) $ $ pM_9 $
$ p^m $ $ p-1 $
Value Multiplicity
$ p^{s-1}(p-1)(p^s-1) $ $ M_1+(p-1)M_3 $
$ p^{s-1}(p^{s+1}-p^s+1) $ $ (p-1)M_1+(p-1)^2M_3 $
$ p^{s-1}(p-1)(p^s+1) $ $ M_2+(p-1)M_4 $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ (p-1)M_2+(p-1)^2M_4 $
$ p^{s+\frac{d}{2}-1}(p^{s-\frac{d}{2}+1}-p^{s-\frac{d}{2}}\pm1) $ $ (p-1)M_{5,\pm1}+(p-1)^2M_{6,\pm1} $
$ p^{s+\frac{d}{2}-1}(p-1)(p^{s-\frac{d}{2}}\pm1) $ $ M_{5,\mp1}+(p-1)M_{6,\mp1} $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ M_7+(p-1)M_8 $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}-1) $ $ (p-1)M_7+(p-1)^2M_8 $
$ p^{m-1}(p-1) $ $ pM_9 $
$ p^m $ $ p-1 $
Table 7.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = 2d $
Value Multiplicity
$ p^{s-1}(p-1)(p^s+1) $ $ M_1+(p-1)M_2 $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ (p-1)M_1+(p-1)^2M_2 $
$ p^{s+d-1}(p-1)(p^{s-d}-1) $ $ M_3+(p-1)M_4 $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}+1) $ $ (p-1)M_3+(p-1)^2M_4 $
$ p^{s+2d-1}(p-1)(p^{s-2d}+1) $ $ M_5+(p-1)M_6 $
$ p^{s+2d-1}(p^{s-2d+1}-p^{s-2d}-1) $ $ (p-1)M_5+(p-1)^2M_6 $
$ p^{m-1}(p-1) $ $ pM_7 $
$ p^m $ $ p-1 $
Value Multiplicity
$ p^{s-1}(p-1)(p^s+1) $ $ M_1+(p-1)M_2 $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ (p-1)M_1+(p-1)^2M_2 $
$ p^{s+d-1}(p-1)(p^{s-d}-1) $ $ M_3+(p-1)M_4 $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}+1) $ $ (p-1)M_3+(p-1)^2M_4 $
$ p^{s+2d-1}(p-1)(p^{s-2d}+1) $ $ M_5+(p-1)M_6 $
$ p^{s+2d-1}(p^{s-2d+1}-p^{s-2d}-1) $ $ (p-1)M_5+(p-1)^2M_6 $
$ p^{m-1}(p-1) $ $ pM_7 $
$ p^m $ $ p-1 $
Table 8.  The value distribution of $ S(a,b,c) $ when $ d' = d $ is odd
Value Multiplicity
$ p^s $ $ M_1= \frac{1}{2}p^{s+d-1}(p^s+1)(p^s+p-1)(p^m-1)/(p^d+1) $
$ -p^s $ $ M_2=\frac{1}{2}p^{s+d-1}(p^s-1)(p^s-p+1)(p^m-2p^{m-d}+1)/(p^d-1) $
$ \zeta^j_pp^s $ $ M_3=\frac{1}{2}p^{s+d-1}(p^m-1)^2/(p^d+1) $
$ -\zeta^j_pp^s $ $ M_4=\frac{1}{2}p^{s+d-1}(p^m-2p^{m-d}+1)(p^m-1)/(p^d-1) $
$ \varepsilon\sqrt{p^*}p^{s+\frac{d-1}{2}} $ $ M_5=\frac{1}{2}p^{3s-2d-1}(p^m-1) $
$ \varepsilon\sqrt{p^*}p^{s+\frac{d-1}{2}}\zeta^j_p $ $ M_{6,\varepsilon}=\frac{1}{2}p^{m-\frac{3d+1}{2}}(p^{s-\frac{d+1}{2}}+\varepsilon\eta'(-j))(p^m-1) $
$ -p^{s+d} $ $ M_7=p^{s-d-1}(p^{s-d}-1)(p^{s-d}-p+1)(p^m-1)/(p^{2d}-1) $
$ -p^{s+d}\zeta^j_p $ $ M_8= p^{s-d-1}(p^{m-2d}-1)(p^m-1)/(p^{2d}-1) $
$ 0 $ $ M_9=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d}+1)(p^m-1) $
$ p^m $ $ 1 $
Value Multiplicity
$ p^s $ $ M_1= \frac{1}{2}p^{s+d-1}(p^s+1)(p^s+p-1)(p^m-1)/(p^d+1) $
$ -p^s $ $ M_2=\frac{1}{2}p^{s+d-1}(p^s-1)(p^s-p+1)(p^m-2p^{m-d}+1)/(p^d-1) $
$ \zeta^j_pp^s $ $ M_3=\frac{1}{2}p^{s+d-1}(p^m-1)^2/(p^d+1) $
$ -\zeta^j_pp^s $ $ M_4=\frac{1}{2}p^{s+d-1}(p^m-2p^{m-d}+1)(p^m-1)/(p^d-1) $
$ \varepsilon\sqrt{p^*}p^{s+\frac{d-1}{2}} $ $ M_5=\frac{1}{2}p^{3s-2d-1}(p^m-1) $
$ \varepsilon\sqrt{p^*}p^{s+\frac{d-1}{2}}\zeta^j_p $ $ M_{6,\varepsilon}=\frac{1}{2}p^{m-\frac{3d+1}{2}}(p^{s-\frac{d+1}{2}}+\varepsilon\eta'(-j))(p^m-1) $
$ -p^{s+d} $ $ M_7=p^{s-d-1}(p^{s-d}-1)(p^{s-d}-p+1)(p^m-1)/(p^{2d}-1) $
$ -p^{s+d}\zeta^j_p $ $ M_8= p^{s-d-1}(p^{m-2d}-1)(p^m-1)/(p^{2d}-1) $
$ 0 $ $ M_9=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d}+1)(p^m-1) $
$ p^m $ $ 1 $
Table 9.  The value distribution of $ S(a,b,c) $ when $ d' = d $ is even
Value Multiplicity
$ p^s $ $ M_1= \frac{1}{2}p^{s+d-1}(p^s+1)(p^s+p-1)(p^m-1)/(p^d+1) $
$ -p^s $ $ M_2=\frac{1}{2}p^{s+d-1}(p^s-1)(p^s-p+1)(p^m-2p^{m-d}+1)/(p^d-1) $
$ \zeta^j_pp^s $ $ M_3=\frac{1}{2}p^{s+d-1}(p^m-1)^2/(p^d+1) $
$ -\zeta^j_pp^s $ $ M_4=\frac{1}{2}p^{s+d-1}(p^m-2p^{m-d}+1)(p^m-1)/(p^d-1) $
$ \varepsilon p^{s+\frac{d}{2}} $ $ M_{5,\varepsilon}=\frac{1}{2}p^{m-\frac{3d}{2}-1}(p^{s-\frac{d}{2}}+\varepsilon(p-1))(p^m-1) $
$ \varepsilon p^{s+\frac{d}{2}}\zeta^j_p $ $ M_{6,\varepsilon}=\frac{1}{2}p^{m-\frac{3d}{2}-1}(p^{s-\frac{d}{2}}-\varepsilon)(p^m-1) $
$ -p^{s+d} $ $ M_7=p^{s-d-1}(p^{s-d}-1)(p^{s-d}-p+1)(p^m-1)/(p^{2d}-1) $
$ -p^{s+d}\zeta^j_p $ $ M_8= p^{s-d-1}(p^{s-d}-1)(p^{s-d}+1)(p^m-1)/(p^{2d}-1) $
$ 0 $ $ M_9=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d}+1)(p^m-1) $
$ p^m $ $ 1 $
Value Multiplicity
$ p^s $ $ M_1= \frac{1}{2}p^{s+d-1}(p^s+1)(p^s+p-1)(p^m-1)/(p^d+1) $
$ -p^s $ $ M_2=\frac{1}{2}p^{s+d-1}(p^s-1)(p^s-p+1)(p^m-2p^{m-d}+1)/(p^d-1) $
$ \zeta^j_pp^s $ $ M_3=\frac{1}{2}p^{s+d-1}(p^m-1)^2/(p^d+1) $
$ -\zeta^j_pp^s $ $ M_4=\frac{1}{2}p^{s+d-1}(p^m-2p^{m-d}+1)(p^m-1)/(p^d-1) $
$ \varepsilon p^{s+\frac{d}{2}} $ $ M_{5,\varepsilon}=\frac{1}{2}p^{m-\frac{3d}{2}-1}(p^{s-\frac{d}{2}}+\varepsilon(p-1))(p^m-1) $
$ \varepsilon p^{s+\frac{d}{2}}\zeta^j_p $ $ M_{6,\varepsilon}=\frac{1}{2}p^{m-\frac{3d}{2}-1}(p^{s-\frac{d}{2}}-\varepsilon)(p^m-1) $
$ -p^{s+d} $ $ M_7=p^{s-d-1}(p^{s-d}-1)(p^{s-d}-p+1)(p^m-1)/(p^{2d}-1) $
$ -p^{s+d}\zeta^j_p $ $ M_8= p^{s-d-1}(p^{s-d}-1)(p^{s-d}+1)(p^m-1)/(p^{2d}-1) $
$ 0 $ $ M_9=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d}+1)(p^m-1) $
$ p^m $ $ 1 $
Table 10.  The value distribution of $ S(a,b,c) $ when $ d' = 2d $
Value Multiplicity
$ -p^s $ $ M_1=\frac{p^{s+3d-1}(p^s-1)(p^s-p+1)(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)}{(p^d+1)(p^{2d}-1)} $
$ -\zeta^j_pp^s $ $ M_2=\frac{p^{s+3d-1}(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+d} $ $ M_3=\frac{p^{s-1}(p^{s-d}+p-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+d}\zeta^j_p $ $ M_4=\frac{p^{s-1}(p^{s-d}-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ -p^{s+2d} $ $ M_5=\frac{p^{s-2d-1}(p^{s-d}-1)(p^{s-2d}-p+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ -p^{s+2d}\zeta^j_p $ $ M_6=\frac{p^{s-2d-1}(p^{s-d}-1)(p^{s-2d}+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ 0 $ $ M_7=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{3s-4d}+p^{3s-5d}+p^{m-d}- $
$ 2p^{m-2d}+p^{m-3d}-p^{m-4d}+1)(p^m-1) $
$ p^m $ $ 1 $
Value Multiplicity
$ -p^s $ $ M_1=\frac{p^{s+3d-1}(p^s-1)(p^s-p+1)(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)}{(p^d+1)(p^{2d}-1)} $
$ -\zeta^j_pp^s $ $ M_2=\frac{p^{s+3d-1}(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+d} $ $ M_3=\frac{p^{s-1}(p^{s-d}+p-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+d}\zeta^j_p $ $ M_4=\frac{p^{s-1}(p^{s-d}-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ -p^{s+2d} $ $ M_5=\frac{p^{s-2d-1}(p^{s-d}-1)(p^{s-2d}-p+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ -p^{s+2d}\zeta^j_p $ $ M_6=\frac{p^{s-2d-1}(p^{s-d}-1)(p^{s-2d}+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ 0 $ $ M_7=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{3s-4d}+p^{3s-5d}+p^{m-d}- $
$ 2p^{m-2d}+p^{m-3d}-p^{m-4d}+1)(p^m-1) $
$ p^m $ $ 1 $
[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[6]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[7]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[8]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[9]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (44)
  • HTML views (211)
  • Cited by (0)

Other articles
by authors

[Back to Top]