doi: 10.3934/amc.2020088

Infinite families of 2-designs from a class of non-binary Kasami cyclic codes

1. 

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, China

2. 

Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China

3. 

School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610000, China

* Corresponding author: Xiaoni Du

Received  December 2019 Revised  February 2020 Published  June 2020

Fund Project: The second author is supported by NSFC grant No. 61772022. The third author is supported by NSFC grant No. 11971395

Combinatorial $ t $-designs have been an important research subject for many years, as they have wide applications in coding theory, cryptography, communications and statistics. The interplay between coding theory and $ t $-designs has been attracted a lot of attention for both directions. It is well known that a linear code over any finite field can be derived from the incidence matrix of a $ t $-design, meanwhile, that the supports of all codewords with a fixed weight in a code also may hold a $ t $-design. In this paper, by determining the weight distribution of a class of linear codes derived from non-binary Kasami cyclic codes, we obtain infinite families of $ 2 $-designs from the supports of all codewords with a fixed weight in these codes, and calculate their parameters explicitly.

Citation: Rong Wang, Xiaoni Du, Cuiling Fan. Infinite families of 2-designs from a class of non-binary Kasami cyclic codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2020088
References:
[1] E. F. Assmus Jr. and J. D. Key, Designs and Their Codes, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.  Google Scholar
[2]

E. F. Assmus Jr. and H. F. Mattson Jr, New $5$-designs, J. Combinatorial Theory, 6 (1969), 122-152.  doi: 10.1016/S0021-9800(69)80115-8.  Google Scholar

[3]

E. F. Assmus Jr. and H. F. Mattson Jr, Coding and combinatorics, SIAM Rev., 16 (1974), 349-388.  doi: 10.1137/1016056.  Google Scholar

[4]

M. Antweiler and L. Bömer, Complex sequences over GF$ {(p^M)} $ with a two-level autocorrelation function and a large linear span, IEEE Trans. Inform. Theory, 38 (1992), 120-130.  doi: 10.1109/18.108256.  Google Scholar

[5]

T. Beth, D. Jungnickel and H. Lenz, Design Theory, Vol. II. Encyclopedia of Mathematics and its Applications, Vol. 78, 2nd edition, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139507660.003.  Google Scholar

[6]

C. Ding, Designs from Linear Codes, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. doi: 10.1142/11101.  Google Scholar

[7]

C. Ding, Infinite families of $3$-designs from a type of five-weight code, Des. Codes Cryptogr., 86 (2018), 703-719.  doi: 10.1007/s10623-017-0352-6.  Google Scholar

[8]

C. Ding and C. Li, Infinite families of $2$-designs and $3$-designs from linear codes, Discrete Math., 340 (2017), 2415-2431.  doi: 10.1016/j.disc.2017.05.013.  Google Scholar

[9]

K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[10]

X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of linear codes, preprint, arXiv: 1903.07459. Google Scholar

[11]

X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of binary cyclic codes with three nonzeros, preprint, arXiv: 1903.08153. Google Scholar

[12]

X. DuR. Wang and C. Fan, Infinite families of $2$-designs from a class of cyclic codes, J. Comb. Des., 28 (2020), 157-170.  doi: 10.1002/jcd.21682.  Google Scholar

[13]

R. W. Fitzgerald and J. L. Yucas, Sums of Gauss sums and weights of irreducible codes, Finite Fields Appl., 11 (2005), 89-110.  doi: 10.1016/j.ffa.2004.06.002.  Google Scholar

[14] W. C. Huffman and V. Pless, Fundamentals of Error-correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[15]

K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, $2^nd$ edition, Graduate Texts in Mathematics, Vol. 84, Springer-Verlag, New York, 1990.  Google Scholar

[16]

T. KasamiS. Lin and W. W. Peterson, Some results on cyclic codes which are invariant under the affine group and their applications, Information and Control, 11 (1967), 475-496.  doi: 10.1016/S0019-9958(67)90691-2.  Google Scholar

[17]

J. Luo, Y. Tang, and H. Wang, Exponential sums, cycle codees and sequences: the odd characteristic Kasami case, preprint, arXiv: 0902.4508v1 [cs.IT]. Google Scholar

[18]

R. Lidl and H. Niederreiter, Finite Fields, 2nd edition, Encyclopedia of Mathematics and its Applications, Vol. 20, Cambridge University Press, Cambridge, 1997. Google Scholar

[19]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, I, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Google Scholar

[20]

C. Reid and A. Rosa, Steiner systems $ {S} (2, 4, v) $-a survey, The Electronic Journal of Combinatorics, 18 (2010), 1–34. https://www.researchgate.net/publication/266996333. doi: 10.37236/39.  Google Scholar

[21]

J. Serrin, C. J. Colbourn and R. Mathon, Steiner systems, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, (2006), 128–135. https://www.researchgate.net/publication/329786723. Google Scholar

[22]

V. D. Tonchev, Codes and designs, in Handbook of Coding Theory, Vol. I, II North-Holland, Amsterdam, (1998), 1229–1267. https://www.researchgate.net/publication/268549395.  Google Scholar

[23]

V. D. Tonchev, Codes, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, Boca Raton, FL, 2007.  Google Scholar

[24]

M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, J. Number Theory, 55 (1995), 145-159.  doi: 10.1006/jnth.1995.1133.  Google Scholar

show all references

References:
[1] E. F. Assmus Jr. and J. D. Key, Designs and Their Codes, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.  Google Scholar
[2]

E. F. Assmus Jr. and H. F. Mattson Jr, New $5$-designs, J. Combinatorial Theory, 6 (1969), 122-152.  doi: 10.1016/S0021-9800(69)80115-8.  Google Scholar

[3]

E. F. Assmus Jr. and H. F. Mattson Jr, Coding and combinatorics, SIAM Rev., 16 (1974), 349-388.  doi: 10.1137/1016056.  Google Scholar

[4]

M. Antweiler and L. Bömer, Complex sequences over GF$ {(p^M)} $ with a two-level autocorrelation function and a large linear span, IEEE Trans. Inform. Theory, 38 (1992), 120-130.  doi: 10.1109/18.108256.  Google Scholar

[5]

T. Beth, D. Jungnickel and H. Lenz, Design Theory, Vol. II. Encyclopedia of Mathematics and its Applications, Vol. 78, 2nd edition, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139507660.003.  Google Scholar

[6]

C. Ding, Designs from Linear Codes, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. doi: 10.1142/11101.  Google Scholar

[7]

C. Ding, Infinite families of $3$-designs from a type of five-weight code, Des. Codes Cryptogr., 86 (2018), 703-719.  doi: 10.1007/s10623-017-0352-6.  Google Scholar

[8]

C. Ding and C. Li, Infinite families of $2$-designs and $3$-designs from linear codes, Discrete Math., 340 (2017), 2415-2431.  doi: 10.1016/j.disc.2017.05.013.  Google Scholar

[9]

K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[10]

X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of linear codes, preprint, arXiv: 1903.07459. Google Scholar

[11]

X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of binary cyclic codes with three nonzeros, preprint, arXiv: 1903.08153. Google Scholar

[12]

X. DuR. Wang and C. Fan, Infinite families of $2$-designs from a class of cyclic codes, J. Comb. Des., 28 (2020), 157-170.  doi: 10.1002/jcd.21682.  Google Scholar

[13]

R. W. Fitzgerald and J. L. Yucas, Sums of Gauss sums and weights of irreducible codes, Finite Fields Appl., 11 (2005), 89-110.  doi: 10.1016/j.ffa.2004.06.002.  Google Scholar

[14] W. C. Huffman and V. Pless, Fundamentals of Error-correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[15]

K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, $2^nd$ edition, Graduate Texts in Mathematics, Vol. 84, Springer-Verlag, New York, 1990.  Google Scholar

[16]

T. KasamiS. Lin and W. W. Peterson, Some results on cyclic codes which are invariant under the affine group and their applications, Information and Control, 11 (1967), 475-496.  doi: 10.1016/S0019-9958(67)90691-2.  Google Scholar

[17]

J. Luo, Y. Tang, and H. Wang, Exponential sums, cycle codees and sequences: the odd characteristic Kasami case, preprint, arXiv: 0902.4508v1 [cs.IT]. Google Scholar

[18]

R. Lidl and H. Niederreiter, Finite Fields, 2nd edition, Encyclopedia of Mathematics and its Applications, Vol. 20, Cambridge University Press, Cambridge, 1997. Google Scholar

[19]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, I, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Google Scholar

[20]

C. Reid and A. Rosa, Steiner systems $ {S} (2, 4, v) $-a survey, The Electronic Journal of Combinatorics, 18 (2010), 1–34. https://www.researchgate.net/publication/266996333. doi: 10.37236/39.  Google Scholar

[21]

J. Serrin, C. J. Colbourn and R. Mathon, Steiner systems, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, (2006), 128–135. https://www.researchgate.net/publication/329786723. Google Scholar

[22]

V. D. Tonchev, Codes and designs, in Handbook of Coding Theory, Vol. I, II North-Holland, Amsterdam, (1998), 1229–1267. https://www.researchgate.net/publication/268549395.  Google Scholar

[23]

V. D. Tonchev, Codes, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, Boca Raton, FL, 2007.  Google Scholar

[24]

M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, J. Number Theory, 55 (1995), 145-159.  doi: 10.1006/jnth.1995.1133.  Google Scholar

Table 1.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = d $ is odd
Weight Multiplicity
$ 0 $ $ 1 $
$ (p-1)(p^{m-1}-p^{s-1}) $ $ \frac{1}{2}p^{m+d}(p^s+1)(p^m-1)/(p^d+1) $
$ p^{m-1}(p-1)+p^{s-1} $ $ \frac{1}{2}p^{m+d}(p-1)(p^s+1)(p^m-1)/(p^d+1) $
$ (p-1)(p^{m-1}+p^{s-1}) $ $ \frac{p^{m+d}(p^m-2p^{m-d}+1)(p^s-1)}{2(p^d-1)} $
$ p^{m-1}(p-1)-p^{s-1} $ $ \frac{p^{m+d}(p-1)(p^m-2p^{m-d}+1)(p^s-1)}{2(p^d-1)} $
$ p^{m-1}(p-1)\pm (-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ \frac{1}{2}p^{3s-2d}(p-1)(p^m-1) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ p^{m-2d}(p^{s-d}-1)(p^m-1)/(p^{2d}-1) $
$ p^{m-1}(p-1)-p^{s+d-1} $ $ \frac{p^{m-2d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-2d-1}+p^{3s-3d} $
$ -p^{m-2d}+1)(p^m-1) $
$ p^m $ $ p-1 $
Weight Multiplicity
$ 0 $ $ 1 $
$ (p-1)(p^{m-1}-p^{s-1}) $ $ \frac{1}{2}p^{m+d}(p^s+1)(p^m-1)/(p^d+1) $
$ p^{m-1}(p-1)+p^{s-1} $ $ \frac{1}{2}p^{m+d}(p-1)(p^s+1)(p^m-1)/(p^d+1) $
$ (p-1)(p^{m-1}+p^{s-1}) $ $ \frac{p^{m+d}(p^m-2p^{m-d}+1)(p^s-1)}{2(p^d-1)} $
$ p^{m-1}(p-1)-p^{s-1} $ $ \frac{p^{m+d}(p-1)(p^m-2p^{m-d}+1)(p^s-1)}{2(p^d-1)} $
$ p^{m-1}(p-1)\pm (-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ \frac{1}{2}p^{3s-2d}(p-1)(p^m-1) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ p^{m-2d}(p^{s-d}-1)(p^m-1)/(p^{2d}-1) $
$ p^{m-1}(p-1)-p^{s+d-1} $ $ \frac{p^{m-2d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-2d-1}+p^{3s-3d} $
$ -p^{m-2d}+1)(p^m-1) $
$ p^m $ $ p-1 $
Table 2.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = d $ is even
Weight Multiplicity
$ 0 $ $ 1 $
$ p^{s-1}(p-1)(p^s-1) $ $ \frac{1}{2}p^{m+d}(p^s+1)(p^m-1)/(p^d+1) $
$ p^{s-1}(p^{s+1}-p^s+1) $ $ \frac{1}{2}p^{m+d}(p-1)(p^s+1)(p^m-1)/(p^d+1) $
$ p^{s-1}(p-1)(p^s+1) $ $ p^{m+d}(p^m-2p^{m-d}+1)(p^s-1)/2(p^d-1) $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ p^{m+d}(p-1)(p^m-2p^{m-d}+1)(p^s-1)/2(p^d-1) $
$ p^{s+\frac{d}{2}-1}(p-1)(p^{s-\frac{d}{2}} \pm 1) $ $ \frac{1}{2}p^{3s-2d}(p^m-1) $
$ p^{s+\frac{d}{2}-1}(p^{s-\frac{d}{2}+1}-p^{s-\frac{d}{2}}\pm 1) $ $ \frac{1}{2}p^{3s-2d}(p-1)(p^m-1) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ p^{m-2d}(p^{s-d}-1)(p^m-1)/(p^{2d}-1) $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}-1) $ $ \frac{p^{m-2d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d} $
$ +1)(p^m-1) $
$ p^m $ $ p-1 $
Weight Multiplicity
$ 0 $ $ 1 $
$ p^{s-1}(p-1)(p^s-1) $ $ \frac{1}{2}p^{m+d}(p^s+1)(p^m-1)/(p^d+1) $
$ p^{s-1}(p^{s+1}-p^s+1) $ $ \frac{1}{2}p^{m+d}(p-1)(p^s+1)(p^m-1)/(p^d+1) $
$ p^{s-1}(p-1)(p^s+1) $ $ p^{m+d}(p^m-2p^{m-d}+1)(p^s-1)/2(p^d-1) $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ p^{m+d}(p-1)(p^m-2p^{m-d}+1)(p^s-1)/2(p^d-1) $
$ p^{s+\frac{d}{2}-1}(p-1)(p^{s-\frac{d}{2}} \pm 1) $ $ \frac{1}{2}p^{3s-2d}(p^m-1) $
$ p^{s+\frac{d}{2}-1}(p^{s-\frac{d}{2}+1}-p^{s-\frac{d}{2}}\pm 1) $ $ \frac{1}{2}p^{3s-2d}(p-1)(p^m-1) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ p^{m-2d}(p^{s-d}-1)(p^m-1)/(p^{2d}-1) $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}-1) $ $ \frac{p^{m-2d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d} $
$ +1)(p^m-1) $
$ p^m $ $ p-1 $
Table 3.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = 2d $
Weight Multiplicity
$ 0 $ $ 1 $
$ p^{s-1}(p-1)(p^s+1) $ $ \frac{p^{m+3d}(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^s-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ \frac{p^{m+3d}(p-1)(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^s-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+d-1}(p-1)(p^{s-d}-1) $ $ \frac{p^{m-d}(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}+1) $ $ \frac{p^{m-d}(p-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+2d-1}(p-1)(p^{s-2d}+1) $ $ \frac{p^{m-4d}(p^{s-d}-1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+2d-1}(p^{s-2d+1}-p^{s-2d}-1) $ $ \frac{p^{m-4d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{3s-4d} $
$ +p^{3s-5d}+p^{m-d}-2p^{m-2d}+p^{m-3d} $
$ -p^{m-4d}+1)(p^m-1) $
$ p^m $ $ p-1 $
Weight Multiplicity
$ 0 $ $ 1 $
$ p^{s-1}(p-1)(p^s+1) $ $ \frac{p^{m+3d}(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^s-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ \frac{p^{m+3d}(p-1)(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^s-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+d-1}(p-1)(p^{s-d}-1) $ $ \frac{p^{m-d}(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}+1) $ $ \frac{p^{m-d}(p-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+2d-1}(p-1)(p^{s-2d}+1) $ $ \frac{p^{m-4d}(p^{s-d}-1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+2d-1}(p^{s-2d+1}-p^{s-2d}-1) $ $ \frac{p^{m-4d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{3s-4d} $
$ +p^{3s-5d}+p^{m-d}-2p^{m-2d}+p^{m-3d} $
$ -p^{m-4d}+1)(p^m-1) $
$ p^m $ $ p-1 $
Table 4.  The value of $ T(a,b,c,h) $ when $ d' = d $ is odd ($ j\in \mathbb{F}_p $)
Value Corresponding Condition
$ p^{m-1}+\varepsilon p^{s-1}(p-1) $ $ S(a,b,c)=\varepsilon p^s\zeta_p^j\; \mathrm{and}\; h+j=0 $
$ p^{m-1}-\varepsilon p^{s-1} $ $ S(a,b,c)=\varepsilon p^s\zeta_p^j\; \mathrm{and}\; h+j\neq0 $
$ 0 $ $ S(a,b,c)= p^m\; \mathrm{and}\; h\neq0 $
$ p^{m-1}\pm(-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ S(a,b,c)=\varepsilon \sqrt{p^*}p^{s+\frac{d-1}{2}}\zeta_p^j\; \mathrm{and}\; \eta'(h+j)=\pm\varepsilon $
$ p^{m-1}-p^{s+d-1}(p-1) $ $ S(a,b,c)=-p^{s+d}\zeta_p^j \; \mathrm{and}\; h+j=0 $
$ p^{m-1}+p^{s+d-1} $ $ S(a,b,c) $ $ =-p^{s+d}\zeta_p^j \; \mathrm{and}\; h+j\neq0 $
$ p^{m-1} $ $ S(a,b,c)=0\; \mathrm{or}\; S(a,b,c)=\varepsilon\sqrt{p^*}\zeta_p^jp^{s+\frac{d-1}{2}}\; \mathrm{and} $
$ h+j = 0 $
$ p^m $ $ S(a,b,c)=p^m\; \mathrm{and}\; h = 0 $
Value Corresponding Condition
$ p^{m-1}+\varepsilon p^{s-1}(p-1) $ $ S(a,b,c)=\varepsilon p^s\zeta_p^j\; \mathrm{and}\; h+j=0 $
$ p^{m-1}-\varepsilon p^{s-1} $ $ S(a,b,c)=\varepsilon p^s\zeta_p^j\; \mathrm{and}\; h+j\neq0 $
$ 0 $ $ S(a,b,c)= p^m\; \mathrm{and}\; h\neq0 $
$ p^{m-1}\pm(-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ S(a,b,c)=\varepsilon \sqrt{p^*}p^{s+\frac{d-1}{2}}\zeta_p^j\; \mathrm{and}\; \eta'(h+j)=\pm\varepsilon $
$ p^{m-1}-p^{s+d-1}(p-1) $ $ S(a,b,c)=-p^{s+d}\zeta_p^j \; \mathrm{and}\; h+j=0 $
$ p^{m-1}+p^{s+d-1} $ $ S(a,b,c) $ $ =-p^{s+d}\zeta_p^j \; \mathrm{and}\; h+j\neq0 $
$ p^{m-1} $ $ S(a,b,c)=0\; \mathrm{or}\; S(a,b,c)=\varepsilon\sqrt{p^*}\zeta_p^jp^{s+\frac{d-1}{2}}\; \mathrm{and} $
$ h+j = 0 $
$ p^m $ $ S(a,b,c)=p^m\; \mathrm{and}\; h = 0 $
Table 5.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = d $ is odd
Value Multiplicity
$ (p-1)(p^{m-1}-p^{s-1}) $ $ M_1+(p-1)M_3 $
$ p^{m-1}(p-1)+p^{s-1} $ $ (p-1)M_1+(p-1)^2M_3 $
$ (p-1)(p^{m-1}+p^{s-1}) $ $ M_2+(p-1)M_4 $
$ p^{m-1}(p-1)-p^{s-1} $ $ (p-1)M_2+(p-1)^2M_4 $
$ p^{m-1}(p-1)\pm(-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ (p-1)M_5+\frac{(p-1)^2}{2}(M_{6,1}+M_{6,-1}) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ M_7+(p-1)M_8 $
$ p^{m-1}(p-1)-p^{s+d-1} $ $ (p-1)M_7+(p-1)^2M_8 $
$ p^{m-1}(p-1) $ $ pM_9+2M_5+(p-1)(M_{6,1}+M_{6,-1}) $
$ p^m $ $ p-1 $
Value Multiplicity
$ (p-1)(p^{m-1}-p^{s-1}) $ $ M_1+(p-1)M_3 $
$ p^{m-1}(p-1)+p^{s-1} $ $ (p-1)M_1+(p-1)^2M_3 $
$ (p-1)(p^{m-1}+p^{s-1}) $ $ M_2+(p-1)M_4 $
$ p^{m-1}(p-1)-p^{s-1} $ $ (p-1)M_2+(p-1)^2M_4 $
$ p^{m-1}(p-1)\pm(-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ (p-1)M_5+\frac{(p-1)^2}{2}(M_{6,1}+M_{6,-1}) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ M_7+(p-1)M_8 $
$ p^{m-1}(p-1)-p^{s+d-1} $ $ (p-1)M_7+(p-1)^2M_8 $
$ p^{m-1}(p-1) $ $ pM_9+2M_5+(p-1)(M_{6,1}+M_{6,-1}) $
$ p^m $ $ p-1 $
Table 6.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = d $ is even
Value Multiplicity
$ p^{s-1}(p-1)(p^s-1) $ $ M_1+(p-1)M_3 $
$ p^{s-1}(p^{s+1}-p^s+1) $ $ (p-1)M_1+(p-1)^2M_3 $
$ p^{s-1}(p-1)(p^s+1) $ $ M_2+(p-1)M_4 $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ (p-1)M_2+(p-1)^2M_4 $
$ p^{s+\frac{d}{2}-1}(p^{s-\frac{d}{2}+1}-p^{s-\frac{d}{2}}\pm1) $ $ (p-1)M_{5,\pm1}+(p-1)^2M_{6,\pm1} $
$ p^{s+\frac{d}{2}-1}(p-1)(p^{s-\frac{d}{2}}\pm1) $ $ M_{5,\mp1}+(p-1)M_{6,\mp1} $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ M_7+(p-1)M_8 $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}-1) $ $ (p-1)M_7+(p-1)^2M_8 $
$ p^{m-1}(p-1) $ $ pM_9 $
$ p^m $ $ p-1 $
Value Multiplicity
$ p^{s-1}(p-1)(p^s-1) $ $ M_1+(p-1)M_3 $
$ p^{s-1}(p^{s+1}-p^s+1) $ $ (p-1)M_1+(p-1)^2M_3 $
$ p^{s-1}(p-1)(p^s+1) $ $ M_2+(p-1)M_4 $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ (p-1)M_2+(p-1)^2M_4 $
$ p^{s+\frac{d}{2}-1}(p^{s-\frac{d}{2}+1}-p^{s-\frac{d}{2}}\pm1) $ $ (p-1)M_{5,\pm1}+(p-1)^2M_{6,\pm1} $
$ p^{s+\frac{d}{2}-1}(p-1)(p^{s-\frac{d}{2}}\pm1) $ $ M_{5,\mp1}+(p-1)M_{6,\mp1} $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ M_7+(p-1)M_8 $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}-1) $ $ (p-1)M_7+(p-1)^2M_8 $
$ p^{m-1}(p-1) $ $ pM_9 $
$ p^m $ $ p-1 $
Table 7.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = 2d $
Value Multiplicity
$ p^{s-1}(p-1)(p^s+1) $ $ M_1+(p-1)M_2 $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ (p-1)M_1+(p-1)^2M_2 $
$ p^{s+d-1}(p-1)(p^{s-d}-1) $ $ M_3+(p-1)M_4 $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}+1) $ $ (p-1)M_3+(p-1)^2M_4 $
$ p^{s+2d-1}(p-1)(p^{s-2d}+1) $ $ M_5+(p-1)M_6 $
$ p^{s+2d-1}(p^{s-2d+1}-p^{s-2d}-1) $ $ (p-1)M_5+(p-1)^2M_6 $
$ p^{m-1}(p-1) $ $ pM_7 $
$ p^m $ $ p-1 $
Value Multiplicity
$ p^{s-1}(p-1)(p^s+1) $ $ M_1+(p-1)M_2 $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ (p-1)M_1+(p-1)^2M_2 $
$ p^{s+d-1}(p-1)(p^{s-d}-1) $ $ M_3+(p-1)M_4 $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}+1) $ $ (p-1)M_3+(p-1)^2M_4 $
$ p^{s+2d-1}(p-1)(p^{s-2d}+1) $ $ M_5+(p-1)M_6 $
$ p^{s+2d-1}(p^{s-2d+1}-p^{s-2d}-1) $ $ (p-1)M_5+(p-1)^2M_6 $
$ p^{m-1}(p-1) $ $ pM_7 $
$ p^m $ $ p-1 $
Table 8.  The value distribution of $ S(a,b,c) $ when $ d' = d $ is odd
Value Multiplicity
$ p^s $ $ M_1= \frac{1}{2}p^{s+d-1}(p^s+1)(p^s+p-1)(p^m-1)/(p^d+1) $
$ -p^s $ $ M_2=\frac{1}{2}p^{s+d-1}(p^s-1)(p^s-p+1)(p^m-2p^{m-d}+1)/(p^d-1) $
$ \zeta^j_pp^s $ $ M_3=\frac{1}{2}p^{s+d-1}(p^m-1)^2/(p^d+1) $
$ -\zeta^j_pp^s $ $ M_4=\frac{1}{2}p^{s+d-1}(p^m-2p^{m-d}+1)(p^m-1)/(p^d-1) $
$ \varepsilon\sqrt{p^*}p^{s+\frac{d-1}{2}} $ $ M_5=\frac{1}{2}p^{3s-2d-1}(p^m-1) $
$ \varepsilon\sqrt{p^*}p^{s+\frac{d-1}{2}}\zeta^j_p $ $ M_{6,\varepsilon}=\frac{1}{2}p^{m-\frac{3d+1}{2}}(p^{s-\frac{d+1}{2}}+\varepsilon\eta'(-j))(p^m-1) $
$ -p^{s+d} $ $ M_7=p^{s-d-1}(p^{s-d}-1)(p^{s-d}-p+1)(p^m-1)/(p^{2d}-1) $
$ -p^{s+d}\zeta^j_p $ $ M_8= p^{s-d-1}(p^{m-2d}-1)(p^m-1)/(p^{2d}-1) $
$ 0 $ $ M_9=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d}+1)(p^m-1) $
$ p^m $ $ 1 $
Value Multiplicity
$ p^s $ $ M_1= \frac{1}{2}p^{s+d-1}(p^s+1)(p^s+p-1)(p^m-1)/(p^d+1) $
$ -p^s $ $ M_2=\frac{1}{2}p^{s+d-1}(p^s-1)(p^s-p+1)(p^m-2p^{m-d}+1)/(p^d-1) $
$ \zeta^j_pp^s $ $ M_3=\frac{1}{2}p^{s+d-1}(p^m-1)^2/(p^d+1) $
$ -\zeta^j_pp^s $ $ M_4=\frac{1}{2}p^{s+d-1}(p^m-2p^{m-d}+1)(p^m-1)/(p^d-1) $
$ \varepsilon\sqrt{p^*}p^{s+\frac{d-1}{2}} $ $ M_5=\frac{1}{2}p^{3s-2d-1}(p^m-1) $
$ \varepsilon\sqrt{p^*}p^{s+\frac{d-1}{2}}\zeta^j_p $ $ M_{6,\varepsilon}=\frac{1}{2}p^{m-\frac{3d+1}{2}}(p^{s-\frac{d+1}{2}}+\varepsilon\eta'(-j))(p^m-1) $
$ -p^{s+d} $ $ M_7=p^{s-d-1}(p^{s-d}-1)(p^{s-d}-p+1)(p^m-1)/(p^{2d}-1) $
$ -p^{s+d}\zeta^j_p $ $ M_8= p^{s-d-1}(p^{m-2d}-1)(p^m-1)/(p^{2d}-1) $
$ 0 $ $ M_9=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d}+1)(p^m-1) $
$ p^m $ $ 1 $
Table 9.  The value distribution of $ S(a,b,c) $ when $ d' = d $ is even
Value Multiplicity
$ p^s $ $ M_1= \frac{1}{2}p^{s+d-1}(p^s+1)(p^s+p-1)(p^m-1)/(p^d+1) $
$ -p^s $ $ M_2=\frac{1}{2}p^{s+d-1}(p^s-1)(p^s-p+1)(p^m-2p^{m-d}+1)/(p^d-1) $
$ \zeta^j_pp^s $ $ M_3=\frac{1}{2}p^{s+d-1}(p^m-1)^2/(p^d+1) $
$ -\zeta^j_pp^s $ $ M_4=\frac{1}{2}p^{s+d-1}(p^m-2p^{m-d}+1)(p^m-1)/(p^d-1) $
$ \varepsilon p^{s+\frac{d}{2}} $ $ M_{5,\varepsilon}=\frac{1}{2}p^{m-\frac{3d}{2}-1}(p^{s-\frac{d}{2}}+\varepsilon(p-1))(p^m-1) $
$ \varepsilon p^{s+\frac{d}{2}}\zeta^j_p $ $ M_{6,\varepsilon}=\frac{1}{2}p^{m-\frac{3d}{2}-1}(p^{s-\frac{d}{2}}-\varepsilon)(p^m-1) $
$ -p^{s+d} $ $ M_7=p^{s-d-1}(p^{s-d}-1)(p^{s-d}-p+1)(p^m-1)/(p^{2d}-1) $
$ -p^{s+d}\zeta^j_p $ $ M_8= p^{s-d-1}(p^{s-d}-1)(p^{s-d}+1)(p^m-1)/(p^{2d}-1) $
$ 0 $ $ M_9=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d}+1)(p^m-1) $
$ p^m $ $ 1 $
Value Multiplicity
$ p^s $ $ M_1= \frac{1}{2}p^{s+d-1}(p^s+1)(p^s+p-1)(p^m-1)/(p^d+1) $
$ -p^s $ $ M_2=\frac{1}{2}p^{s+d-1}(p^s-1)(p^s-p+1)(p^m-2p^{m-d}+1)/(p^d-1) $
$ \zeta^j_pp^s $ $ M_3=\frac{1}{2}p^{s+d-1}(p^m-1)^2/(p^d+1) $
$ -\zeta^j_pp^s $ $ M_4=\frac{1}{2}p^{s+d-1}(p^m-2p^{m-d}+1)(p^m-1)/(p^d-1) $
$ \varepsilon p^{s+\frac{d}{2}} $ $ M_{5,\varepsilon}=\frac{1}{2}p^{m-\frac{3d}{2}-1}(p^{s-\frac{d}{2}}+\varepsilon(p-1))(p^m-1) $
$ \varepsilon p^{s+\frac{d}{2}}\zeta^j_p $ $ M_{6,\varepsilon}=\frac{1}{2}p^{m-\frac{3d}{2}-1}(p^{s-\frac{d}{2}}-\varepsilon)(p^m-1) $
$ -p^{s+d} $ $ M_7=p^{s-d-1}(p^{s-d}-1)(p^{s-d}-p+1)(p^m-1)/(p^{2d}-1) $
$ -p^{s+d}\zeta^j_p $ $ M_8= p^{s-d-1}(p^{s-d}-1)(p^{s-d}+1)(p^m-1)/(p^{2d}-1) $
$ 0 $ $ M_9=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d}+1)(p^m-1) $
$ p^m $ $ 1 $
Table 10.  The value distribution of $ S(a,b,c) $ when $ d' = 2d $
Value Multiplicity
$ -p^s $ $ M_1=\frac{p^{s+3d-1}(p^s-1)(p^s-p+1)(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)}{(p^d+1)(p^{2d}-1)} $
$ -\zeta^j_pp^s $ $ M_2=\frac{p^{s+3d-1}(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+d} $ $ M_3=\frac{p^{s-1}(p^{s-d}+p-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+d}\zeta^j_p $ $ M_4=\frac{p^{s-1}(p^{s-d}-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ -p^{s+2d} $ $ M_5=\frac{p^{s-2d-1}(p^{s-d}-1)(p^{s-2d}-p+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ -p^{s+2d}\zeta^j_p $ $ M_6=\frac{p^{s-2d-1}(p^{s-d}-1)(p^{s-2d}+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ 0 $ $ M_7=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{3s-4d}+p^{3s-5d}+p^{m-d}- $
$ 2p^{m-2d}+p^{m-3d}-p^{m-4d}+1)(p^m-1) $
$ p^m $ $ 1 $
Value Multiplicity
$ -p^s $ $ M_1=\frac{p^{s+3d-1}(p^s-1)(p^s-p+1)(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)}{(p^d+1)(p^{2d}-1)} $
$ -\zeta^j_pp^s $ $ M_2=\frac{p^{s+3d-1}(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+d} $ $ M_3=\frac{p^{s-1}(p^{s-d}+p-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+d}\zeta^j_p $ $ M_4=\frac{p^{s-1}(p^{s-d}-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ -p^{s+2d} $ $ M_5=\frac{p^{s-2d-1}(p^{s-d}-1)(p^{s-2d}-p+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ -p^{s+2d}\zeta^j_p $ $ M_6=\frac{p^{s-2d-1}(p^{s-d}-1)(p^{s-2d}+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ 0 $ $ M_7=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{3s-4d}+p^{3s-5d}+p^{m-d}- $
$ 2p^{m-2d}+p^{m-3d}-p^{m-4d}+1)(p^m-1) $
$ p^m $ $ 1 $
[1]

Xiaoni Du, Rong Wang, Chunming Tang, Qi Wang. Infinite families of 2-designs from two classes of binary cyclic codes with three nonzeros. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020106

[2]

Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161

[3]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[4]

Pankaj Kumar, Monika Sangwan, Suresh Kumar Arora. The weight distributions of some irreducible cyclic codes of length $p^n$ and $2p^n$. Advances in Mathematics of Communications, 2015, 9 (3) : 277-289. doi: 10.3934/amc.2015.9.277

[5]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020049

[6]

Chengju Li, Qin Yue, Ziling Heng. Weight distributions of a class of cyclic codes from $\Bbb F_l$-conjugates. Advances in Mathematics of Communications, 2015, 9 (3) : 341-352. doi: 10.3934/amc.2015.9.341

[7]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[8]

Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

[9]

Jamshid Moori, Amin Saeidi. Some designs and codes invariant under the Tits group. Advances in Mathematics of Communications, 2017, 11 (1) : 77-82. doi: 10.3934/amc.2017003

[10]

Sara D. Cardell, Joan-Josep Climent, Daniel Panario, Brett Stevens. A construction of $ \mathbb{F}_2 $-linear cyclic, MDS codes. Advances in Mathematics of Communications, 2020, 14 (3) : 437-453. doi: 10.3934/amc.2020047

[11]

Gerardo Vega, Jesús E. Cuén-Ramos. The weight distribution of families of reducible cyclic codes through the weight distribution of some irreducible cyclic codes. Advances in Mathematics of Communications, 2020, 14 (3) : 525-533. doi: 10.3934/amc.2020059

[12]

Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253

[13]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2019  doi: 10.3934/amc.2020044

[14]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[15]

Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008

[16]

Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013

[17]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

[18]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2019  doi: 10.3934/amc.2020045

[19]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[20]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (36)
  • HTML views (149)
  • Cited by (0)

Other articles
by authors

[Back to Top]