doi: 10.3934/amc.2020088

Infinite families of 2-designs from a class of non-binary Kasami cyclic codes

1. 

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, China

2. 

Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China

3. 

School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610000, China

* Corresponding author: Xiaoni Du

Received  December 2019 Revised  February 2020 Published  June 2020

Fund Project: The second author is supported by NSFC grant No. 61772022. The third author is supported by NSFC grant No. 11971395

Combinatorial $ t $-designs have been an important research subject for many years, as they have wide applications in coding theory, cryptography, communications and statistics. The interplay between coding theory and $ t $-designs has been attracted a lot of attention for both directions. It is well known that a linear code over any finite field can be derived from the incidence matrix of a $ t $-design, meanwhile, that the supports of all codewords with a fixed weight in a code also may hold a $ t $-design. In this paper, by determining the weight distribution of a class of linear codes derived from non-binary Kasami cyclic codes, we obtain infinite families of $ 2 $-designs from the supports of all codewords with a fixed weight in these codes, and calculate their parameters explicitly.

Citation: Rong Wang, Xiaoni Du, Cuiling Fan. Infinite families of 2-designs from a class of non-binary Kasami cyclic codes. Advances in Mathematics of Communications, doi: 10.3934/amc.2020088
References:
[1] E. F. Assmus Jr. and J. D. Key, Designs and Their Codes, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.  Google Scholar
[2]

E. F. Assmus Jr. and H. F. Mattson Jr, New $5$-designs, J. Combinatorial Theory, 6 (1969), 122-152.  doi: 10.1016/S0021-9800(69)80115-8.  Google Scholar

[3]

E. F. Assmus Jr. and H. F. Mattson Jr, Coding and combinatorics, SIAM Rev., 16 (1974), 349-388.  doi: 10.1137/1016056.  Google Scholar

[4]

M. Antweiler and L. Bömer, Complex sequences over GF$ {(p^M)} $ with a two-level autocorrelation function and a large linear span, IEEE Trans. Inform. Theory, 38 (1992), 120-130.  doi: 10.1109/18.108256.  Google Scholar

[5]

T. Beth, D. Jungnickel and H. Lenz, Design Theory, Vol. II. Encyclopedia of Mathematics and its Applications, Vol. 78, 2nd edition, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139507660.003.  Google Scholar

[6]

C. Ding, Designs from Linear Codes, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. doi: 10.1142/11101.  Google Scholar

[7]

C. Ding, Infinite families of $3$-designs from a type of five-weight code, Des. Codes Cryptogr., 86 (2018), 703-719.  doi: 10.1007/s10623-017-0352-6.  Google Scholar

[8]

C. Ding and C. Li, Infinite families of $2$-designs and $3$-designs from linear codes, Discrete Math., 340 (2017), 2415-2431.  doi: 10.1016/j.disc.2017.05.013.  Google Scholar

[9]

K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[10]

X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of linear codes, preprint, arXiv: 1903.07459. Google Scholar

[11]

X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of binary cyclic codes with three nonzeros, preprint, arXiv: 1903.08153. Google Scholar

[12]

X. DuR. Wang and C. Fan, Infinite families of $2$-designs from a class of cyclic codes, J. Comb. Des., 28 (2020), 157-170.  doi: 10.1002/jcd.21682.  Google Scholar

[13]

R. W. Fitzgerald and J. L. Yucas, Sums of Gauss sums and weights of irreducible codes, Finite Fields Appl., 11 (2005), 89-110.  doi: 10.1016/j.ffa.2004.06.002.  Google Scholar

[14] W. C. Huffman and V. Pless, Fundamentals of Error-correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[15]

K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, $2^nd$ edition, Graduate Texts in Mathematics, Vol. 84, Springer-Verlag, New York, 1990.  Google Scholar

[16]

T. KasamiS. Lin and W. W. Peterson, Some results on cyclic codes which are invariant under the affine group and their applications, Information and Control, 11 (1967), 475-496.  doi: 10.1016/S0019-9958(67)90691-2.  Google Scholar

[17]

J. Luo, Y. Tang, and H. Wang, Exponential sums, cycle codees and sequences: the odd characteristic Kasami case, preprint, arXiv: 0902.4508v1 [cs.IT]. Google Scholar

[18]

R. Lidl and H. Niederreiter, Finite Fields, 2nd edition, Encyclopedia of Mathematics and its Applications, Vol. 20, Cambridge University Press, Cambridge, 1997. Google Scholar

[19]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, I, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Google Scholar

[20]

C. Reid and A. Rosa, Steiner systems $ {S} (2, 4, v) $-a survey, The Electronic Journal of Combinatorics, 18 (2010), 1–34. https://www.researchgate.net/publication/266996333. doi: 10.37236/39.  Google Scholar

[21]

J. Serrin, C. J. Colbourn and R. Mathon, Steiner systems, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, (2006), 128–135. https://www.researchgate.net/publication/329786723. Google Scholar

[22]

V. D. Tonchev, Codes and designs, in Handbook of Coding Theory, Vol. I, II North-Holland, Amsterdam, (1998), 1229–1267. https://www.researchgate.net/publication/268549395.  Google Scholar

[23]

V. D. Tonchev, Codes, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, Boca Raton, FL, 2007.  Google Scholar

[24]

M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, J. Number Theory, 55 (1995), 145-159.  doi: 10.1006/jnth.1995.1133.  Google Scholar

show all references

References:
[1] E. F. Assmus Jr. and J. D. Key, Designs and Their Codes, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9781316529836.  Google Scholar
[2]

E. F. Assmus Jr. and H. F. Mattson Jr, New $5$-designs, J. Combinatorial Theory, 6 (1969), 122-152.  doi: 10.1016/S0021-9800(69)80115-8.  Google Scholar

[3]

E. F. Assmus Jr. and H. F. Mattson Jr, Coding and combinatorics, SIAM Rev., 16 (1974), 349-388.  doi: 10.1137/1016056.  Google Scholar

[4]

M. Antweiler and L. Bömer, Complex sequences over GF$ {(p^M)} $ with a two-level autocorrelation function and a large linear span, IEEE Trans. Inform. Theory, 38 (1992), 120-130.  doi: 10.1109/18.108256.  Google Scholar

[5]

T. Beth, D. Jungnickel and H. Lenz, Design Theory, Vol. II. Encyclopedia of Mathematics and its Applications, Vol. 78, 2nd edition, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139507660.003.  Google Scholar

[6]

C. Ding, Designs from Linear Codes, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019. doi: 10.1142/11101.  Google Scholar

[7]

C. Ding, Infinite families of $3$-designs from a type of five-weight code, Des. Codes Cryptogr., 86 (2018), 703-719.  doi: 10.1007/s10623-017-0352-6.  Google Scholar

[8]

C. Ding and C. Li, Infinite families of $2$-designs and $3$-designs from linear codes, Discrete Math., 340 (2017), 2415-2431.  doi: 10.1016/j.disc.2017.05.013.  Google Scholar

[9]

K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.  doi: 10.1109/TIT.2015.2473861.  Google Scholar

[10]

X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of linear codes, preprint, arXiv: 1903.07459. Google Scholar

[11]

X. Du, R. Wang, C. Tang and Q. Wang, Infinite families of $2$-designs from two classes of binary cyclic codes with three nonzeros, preprint, arXiv: 1903.08153. Google Scholar

[12]

X. DuR. Wang and C. Fan, Infinite families of $2$-designs from a class of cyclic codes, J. Comb. Des., 28 (2020), 157-170.  doi: 10.1002/jcd.21682.  Google Scholar

[13]

R. W. Fitzgerald and J. L. Yucas, Sums of Gauss sums and weights of irreducible codes, Finite Fields Appl., 11 (2005), 89-110.  doi: 10.1016/j.ffa.2004.06.002.  Google Scholar

[14] W. C. Huffman and V. Pless, Fundamentals of Error-correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.  Google Scholar
[15]

K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, $2^nd$ edition, Graduate Texts in Mathematics, Vol. 84, Springer-Verlag, New York, 1990.  Google Scholar

[16]

T. KasamiS. Lin and W. W. Peterson, Some results on cyclic codes which are invariant under the affine group and their applications, Information and Control, 11 (1967), 475-496.  doi: 10.1016/S0019-9958(67)90691-2.  Google Scholar

[17]

J. Luo, Y. Tang, and H. Wang, Exponential sums, cycle codees and sequences: the odd characteristic Kasami case, preprint, arXiv: 0902.4508v1 [cs.IT]. Google Scholar

[18]

R. Lidl and H. Niederreiter, Finite Fields, 2nd edition, Encyclopedia of Mathematics and its Applications, Vol. 20, Cambridge University Press, Cambridge, 1997. Google Scholar

[19]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, I, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Google Scholar

[20]

C. Reid and A. Rosa, Steiner systems $ {S} (2, 4, v) $-a survey, The Electronic Journal of Combinatorics, 18 (2010), 1–34. https://www.researchgate.net/publication/266996333. doi: 10.37236/39.  Google Scholar

[21]

J. Serrin, C. J. Colbourn and R. Mathon, Steiner systems, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, (2006), 128–135. https://www.researchgate.net/publication/329786723. Google Scholar

[22]

V. D. Tonchev, Codes and designs, in Handbook of Coding Theory, Vol. I, II North-Holland, Amsterdam, (1998), 1229–1267. https://www.researchgate.net/publication/268549395.  Google Scholar

[23]

V. D. Tonchev, Codes, in Handbook of Combinatorial Designs, $2^nd$ edition, Chapman and Hall/CRC, Boca Raton, FL, 2007.  Google Scholar

[24]

M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, J. Number Theory, 55 (1995), 145-159.  doi: 10.1006/jnth.1995.1133.  Google Scholar

Table 1.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = d $ is odd
Weight Multiplicity
$ 0 $ $ 1 $
$ (p-1)(p^{m-1}-p^{s-1}) $ $ \frac{1}{2}p^{m+d}(p^s+1)(p^m-1)/(p^d+1) $
$ p^{m-1}(p-1)+p^{s-1} $ $ \frac{1}{2}p^{m+d}(p-1)(p^s+1)(p^m-1)/(p^d+1) $
$ (p-1)(p^{m-1}+p^{s-1}) $ $ \frac{p^{m+d}(p^m-2p^{m-d}+1)(p^s-1)}{2(p^d-1)} $
$ p^{m-1}(p-1)-p^{s-1} $ $ \frac{p^{m+d}(p-1)(p^m-2p^{m-d}+1)(p^s-1)}{2(p^d-1)} $
$ p^{m-1}(p-1)\pm (-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ \frac{1}{2}p^{3s-2d}(p-1)(p^m-1) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ p^{m-2d}(p^{s-d}-1)(p^m-1)/(p^{2d}-1) $
$ p^{m-1}(p-1)-p^{s+d-1} $ $ \frac{p^{m-2d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-2d-1}+p^{3s-3d} $
$ -p^{m-2d}+1)(p^m-1) $
$ p^m $ $ p-1 $
Weight Multiplicity
$ 0 $ $ 1 $
$ (p-1)(p^{m-1}-p^{s-1}) $ $ \frac{1}{2}p^{m+d}(p^s+1)(p^m-1)/(p^d+1) $
$ p^{m-1}(p-1)+p^{s-1} $ $ \frac{1}{2}p^{m+d}(p-1)(p^s+1)(p^m-1)/(p^d+1) $
$ (p-1)(p^{m-1}+p^{s-1}) $ $ \frac{p^{m+d}(p^m-2p^{m-d}+1)(p^s-1)}{2(p^d-1)} $
$ p^{m-1}(p-1)-p^{s-1} $ $ \frac{p^{m+d}(p-1)(p^m-2p^{m-d}+1)(p^s-1)}{2(p^d-1)} $
$ p^{m-1}(p-1)\pm (-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ \frac{1}{2}p^{3s-2d}(p-1)(p^m-1) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ p^{m-2d}(p^{s-d}-1)(p^m-1)/(p^{2d}-1) $
$ p^{m-1}(p-1)-p^{s+d-1} $ $ \frac{p^{m-2d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-2d-1}+p^{3s-3d} $
$ -p^{m-2d}+1)(p^m-1) $
$ p^m $ $ p-1 $
Table 2.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = d $ is even
Weight Multiplicity
$ 0 $ $ 1 $
$ p^{s-1}(p-1)(p^s-1) $ $ \frac{1}{2}p^{m+d}(p^s+1)(p^m-1)/(p^d+1) $
$ p^{s-1}(p^{s+1}-p^s+1) $ $ \frac{1}{2}p^{m+d}(p-1)(p^s+1)(p^m-1)/(p^d+1) $
$ p^{s-1}(p-1)(p^s+1) $ $ p^{m+d}(p^m-2p^{m-d}+1)(p^s-1)/2(p^d-1) $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ p^{m+d}(p-1)(p^m-2p^{m-d}+1)(p^s-1)/2(p^d-1) $
$ p^{s+\frac{d}{2}-1}(p-1)(p^{s-\frac{d}{2}} \pm 1) $ $ \frac{1}{2}p^{3s-2d}(p^m-1) $
$ p^{s+\frac{d}{2}-1}(p^{s-\frac{d}{2}+1}-p^{s-\frac{d}{2}}\pm 1) $ $ \frac{1}{2}p^{3s-2d}(p-1)(p^m-1) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ p^{m-2d}(p^{s-d}-1)(p^m-1)/(p^{2d}-1) $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}-1) $ $ \frac{p^{m-2d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d} $
$ +1)(p^m-1) $
$ p^m $ $ p-1 $
Weight Multiplicity
$ 0 $ $ 1 $
$ p^{s-1}(p-1)(p^s-1) $ $ \frac{1}{2}p^{m+d}(p^s+1)(p^m-1)/(p^d+1) $
$ p^{s-1}(p^{s+1}-p^s+1) $ $ \frac{1}{2}p^{m+d}(p-1)(p^s+1)(p^m-1)/(p^d+1) $
$ p^{s-1}(p-1)(p^s+1) $ $ p^{m+d}(p^m-2p^{m-d}+1)(p^s-1)/2(p^d-1) $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ p^{m+d}(p-1)(p^m-2p^{m-d}+1)(p^s-1)/2(p^d-1) $
$ p^{s+\frac{d}{2}-1}(p-1)(p^{s-\frac{d}{2}} \pm 1) $ $ \frac{1}{2}p^{3s-2d}(p^m-1) $
$ p^{s+\frac{d}{2}-1}(p^{s-\frac{d}{2}+1}-p^{s-\frac{d}{2}}\pm 1) $ $ \frac{1}{2}p^{3s-2d}(p-1)(p^m-1) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ p^{m-2d}(p^{s-d}-1)(p^m-1)/(p^{2d}-1) $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}-1) $ $ \frac{p^{m-2d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d} $
$ +1)(p^m-1) $
$ p^m $ $ p-1 $
Table 3.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = 2d $
Weight Multiplicity
$ 0 $ $ 1 $
$ p^{s-1}(p-1)(p^s+1) $ $ \frac{p^{m+3d}(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^s-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ \frac{p^{m+3d}(p-1)(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^s-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+d-1}(p-1)(p^{s-d}-1) $ $ \frac{p^{m-d}(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}+1) $ $ \frac{p^{m-d}(p-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+2d-1}(p-1)(p^{s-2d}+1) $ $ \frac{p^{m-4d}(p^{s-d}-1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+2d-1}(p^{s-2d+1}-p^{s-2d}-1) $ $ \frac{p^{m-4d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{3s-4d} $
$ +p^{3s-5d}+p^{m-d}-2p^{m-2d}+p^{m-3d} $
$ -p^{m-4d}+1)(p^m-1) $
$ p^m $ $ p-1 $
Weight Multiplicity
$ 0 $ $ 1 $
$ p^{s-1}(p-1)(p^s+1) $ $ \frac{p^{m+3d}(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^s-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ \frac{p^{m+3d}(p-1)(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^s-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+d-1}(p-1)(p^{s-d}-1) $ $ \frac{p^{m-d}(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}+1) $ $ \frac{p^{m-d}(p-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+2d-1}(p-1)(p^{s-2d}+1) $ $ \frac{p^{m-4d}(p^{s-d}-1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+2d-1}(p^{s-2d+1}-p^{s-2d}-1) $ $ \frac{p^{m-4d}(p-1)(p^{s-d}-1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{m-1}(p-1) $ $ p(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{3s-4d} $
$ +p^{3s-5d}+p^{m-d}-2p^{m-2d}+p^{m-3d} $
$ -p^{m-4d}+1)(p^m-1) $
$ p^m $ $ p-1 $
Table 4.  The value of $ T(a,b,c,h) $ when $ d' = d $ is odd ($ j\in \mathbb{F}_p $)
Value Corresponding Condition
$ p^{m-1}+\varepsilon p^{s-1}(p-1) $ $ S(a,b,c)=\varepsilon p^s\zeta_p^j\; \mathrm{and}\; h+j=0 $
$ p^{m-1}-\varepsilon p^{s-1} $ $ S(a,b,c)=\varepsilon p^s\zeta_p^j\; \mathrm{and}\; h+j\neq0 $
$ 0 $ $ S(a,b,c)= p^m\; \mathrm{and}\; h\neq0 $
$ p^{m-1}\pm(-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ S(a,b,c)=\varepsilon \sqrt{p^*}p^{s+\frac{d-1}{2}}\zeta_p^j\; \mathrm{and}\; \eta'(h+j)=\pm\varepsilon $
$ p^{m-1}-p^{s+d-1}(p-1) $ $ S(a,b,c)=-p^{s+d}\zeta_p^j \; \mathrm{and}\; h+j=0 $
$ p^{m-1}+p^{s+d-1} $ $ S(a,b,c) $ $ =-p^{s+d}\zeta_p^j \; \mathrm{and}\; h+j\neq0 $
$ p^{m-1} $ $ S(a,b,c)=0\; \mathrm{or}\; S(a,b,c)=\varepsilon\sqrt{p^*}\zeta_p^jp^{s+\frac{d-1}{2}}\; \mathrm{and} $
$ h+j = 0 $
$ p^m $ $ S(a,b,c)=p^m\; \mathrm{and}\; h = 0 $
Value Corresponding Condition
$ p^{m-1}+\varepsilon p^{s-1}(p-1) $ $ S(a,b,c)=\varepsilon p^s\zeta_p^j\; \mathrm{and}\; h+j=0 $
$ p^{m-1}-\varepsilon p^{s-1} $ $ S(a,b,c)=\varepsilon p^s\zeta_p^j\; \mathrm{and}\; h+j\neq0 $
$ 0 $ $ S(a,b,c)= p^m\; \mathrm{and}\; h\neq0 $
$ p^{m-1}\pm(-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ S(a,b,c)=\varepsilon \sqrt{p^*}p^{s+\frac{d-1}{2}}\zeta_p^j\; \mathrm{and}\; \eta'(h+j)=\pm\varepsilon $
$ p^{m-1}-p^{s+d-1}(p-1) $ $ S(a,b,c)=-p^{s+d}\zeta_p^j \; \mathrm{and}\; h+j=0 $
$ p^{m-1}+p^{s+d-1} $ $ S(a,b,c) $ $ =-p^{s+d}\zeta_p^j \; \mathrm{and}\; h+j\neq0 $
$ p^{m-1} $ $ S(a,b,c)=0\; \mathrm{or}\; S(a,b,c)=\varepsilon\sqrt{p^*}\zeta_p^jp^{s+\frac{d-1}{2}}\; \mathrm{and} $
$ h+j = 0 $
$ p^m $ $ S(a,b,c)=p^m\; \mathrm{and}\; h = 0 $
Table 5.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = d $ is odd
Value Multiplicity
$ (p-1)(p^{m-1}-p^{s-1}) $ $ M_1+(p-1)M_3 $
$ p^{m-1}(p-1)+p^{s-1} $ $ (p-1)M_1+(p-1)^2M_3 $
$ (p-1)(p^{m-1}+p^{s-1}) $ $ M_2+(p-1)M_4 $
$ p^{m-1}(p-1)-p^{s-1} $ $ (p-1)M_2+(p-1)^2M_4 $
$ p^{m-1}(p-1)\pm(-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ (p-1)M_5+\frac{(p-1)^2}{2}(M_{6,1}+M_{6,-1}) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ M_7+(p-1)M_8 $
$ p^{m-1}(p-1)-p^{s+d-1} $ $ (p-1)M_7+(p-1)^2M_8 $
$ p^{m-1}(p-1) $ $ pM_9+2M_5+(p-1)(M_{6,1}+M_{6,-1}) $
$ p^m $ $ p-1 $
Value Multiplicity
$ (p-1)(p^{m-1}-p^{s-1}) $ $ M_1+(p-1)M_3 $
$ p^{m-1}(p-1)+p^{s-1} $ $ (p-1)M_1+(p-1)^2M_3 $
$ (p-1)(p^{m-1}+p^{s-1}) $ $ M_2+(p-1)M_4 $
$ p^{m-1}(p-1)-p^{s-1} $ $ (p-1)M_2+(p-1)^2M_4 $
$ p^{m-1}(p-1)\pm(-1)^{\frac{p-1}{2}}p^{s+\frac{d-1}{2}} $ $ (p-1)M_5+\frac{(p-1)^2}{2}(M_{6,1}+M_{6,-1}) $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ M_7+(p-1)M_8 $
$ p^{m-1}(p-1)-p^{s+d-1} $ $ (p-1)M_7+(p-1)^2M_8 $
$ p^{m-1}(p-1) $ $ pM_9+2M_5+(p-1)(M_{6,1}+M_{6,-1}) $
$ p^m $ $ p-1 $
Table 6.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = d $ is even
Value Multiplicity
$ p^{s-1}(p-1)(p^s-1) $ $ M_1+(p-1)M_3 $
$ p^{s-1}(p^{s+1}-p^s+1) $ $ (p-1)M_1+(p-1)^2M_3 $
$ p^{s-1}(p-1)(p^s+1) $ $ M_2+(p-1)M_4 $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ (p-1)M_2+(p-1)^2M_4 $
$ p^{s+\frac{d}{2}-1}(p^{s-\frac{d}{2}+1}-p^{s-\frac{d}{2}}\pm1) $ $ (p-1)M_{5,\pm1}+(p-1)^2M_{6,\pm1} $
$ p^{s+\frac{d}{2}-1}(p-1)(p^{s-\frac{d}{2}}\pm1) $ $ M_{5,\mp1}+(p-1)M_{6,\mp1} $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ M_7+(p-1)M_8 $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}-1) $ $ (p-1)M_7+(p-1)^2M_8 $
$ p^{m-1}(p-1) $ $ pM_9 $
$ p^m $ $ p-1 $
Value Multiplicity
$ p^{s-1}(p-1)(p^s-1) $ $ M_1+(p-1)M_3 $
$ p^{s-1}(p^{s+1}-p^s+1) $ $ (p-1)M_1+(p-1)^2M_3 $
$ p^{s-1}(p-1)(p^s+1) $ $ M_2+(p-1)M_4 $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ (p-1)M_2+(p-1)^2M_4 $
$ p^{s+\frac{d}{2}-1}(p^{s-\frac{d}{2}+1}-p^{s-\frac{d}{2}}\pm1) $ $ (p-1)M_{5,\pm1}+(p-1)^2M_{6,\pm1} $
$ p^{s+\frac{d}{2}-1}(p-1)(p^{s-\frac{d}{2}}\pm1) $ $ M_{5,\mp1}+(p-1)M_{6,\mp1} $
$ p^{s+d-1}(p-1)(p^{s-d}+1) $ $ M_7+(p-1)M_8 $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}-1) $ $ (p-1)M_7+(p-1)^2M_8 $
$ p^{m-1}(p-1) $ $ pM_9 $
$ p^m $ $ p-1 $
Table 7.  The weight distribution of $ {\overline{{\mathbb{C}}^{\bot}}}^{\bot} $ when $ d' = 2d $
Value Multiplicity
$ p^{s-1}(p-1)(p^s+1) $ $ M_1+(p-1)M_2 $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ (p-1)M_1+(p-1)^2M_2 $
$ p^{s+d-1}(p-1)(p^{s-d}-1) $ $ M_3+(p-1)M_4 $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}+1) $ $ (p-1)M_3+(p-1)^2M_4 $
$ p^{s+2d-1}(p-1)(p^{s-2d}+1) $ $ M_5+(p-1)M_6 $
$ p^{s+2d-1}(p^{s-2d+1}-p^{s-2d}-1) $ $ (p-1)M_5+(p-1)^2M_6 $
$ p^{m-1}(p-1) $ $ pM_7 $
$ p^m $ $ p-1 $
Value Multiplicity
$ p^{s-1}(p-1)(p^s+1) $ $ M_1+(p-1)M_2 $
$ p^{s-1}(p^{s+1}-p^s-1) $ $ (p-1)M_1+(p-1)^2M_2 $
$ p^{s+d-1}(p-1)(p^{s-d}-1) $ $ M_3+(p-1)M_4 $
$ p^{s+d-1}(p^{s-d+1}-p^{s-d}+1) $ $ (p-1)M_3+(p-1)^2M_4 $
$ p^{s+2d-1}(p-1)(p^{s-2d}+1) $ $ M_5+(p-1)M_6 $
$ p^{s+2d-1}(p^{s-2d+1}-p^{s-2d}-1) $ $ (p-1)M_5+(p-1)^2M_6 $
$ p^{m-1}(p-1) $ $ pM_7 $
$ p^m $ $ p-1 $
Table 8.  The value distribution of $ S(a,b,c) $ when $ d' = d $ is odd
Value Multiplicity
$ p^s $ $ M_1= \frac{1}{2}p^{s+d-1}(p^s+1)(p^s+p-1)(p^m-1)/(p^d+1) $
$ -p^s $ $ M_2=\frac{1}{2}p^{s+d-1}(p^s-1)(p^s-p+1)(p^m-2p^{m-d}+1)/(p^d-1) $
$ \zeta^j_pp^s $ $ M_3=\frac{1}{2}p^{s+d-1}(p^m-1)^2/(p^d+1) $
$ -\zeta^j_pp^s $ $ M_4=\frac{1}{2}p^{s+d-1}(p^m-2p^{m-d}+1)(p^m-1)/(p^d-1) $
$ \varepsilon\sqrt{p^*}p^{s+\frac{d-1}{2}} $ $ M_5=\frac{1}{2}p^{3s-2d-1}(p^m-1) $
$ \varepsilon\sqrt{p^*}p^{s+\frac{d-1}{2}}\zeta^j_p $ $ M_{6,\varepsilon}=\frac{1}{2}p^{m-\frac{3d+1}{2}}(p^{s-\frac{d+1}{2}}+\varepsilon\eta'(-j))(p^m-1) $
$ -p^{s+d} $ $ M_7=p^{s-d-1}(p^{s-d}-1)(p^{s-d}-p+1)(p^m-1)/(p^{2d}-1) $
$ -p^{s+d}\zeta^j_p $ $ M_8= p^{s-d-1}(p^{m-2d}-1)(p^m-1)/(p^{2d}-1) $
$ 0 $ $ M_9=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d}+1)(p^m-1) $
$ p^m $ $ 1 $
Value Multiplicity
$ p^s $ $ M_1= \frac{1}{2}p^{s+d-1}(p^s+1)(p^s+p-1)(p^m-1)/(p^d+1) $
$ -p^s $ $ M_2=\frac{1}{2}p^{s+d-1}(p^s-1)(p^s-p+1)(p^m-2p^{m-d}+1)/(p^d-1) $
$ \zeta^j_pp^s $ $ M_3=\frac{1}{2}p^{s+d-1}(p^m-1)^2/(p^d+1) $
$ -\zeta^j_pp^s $ $ M_4=\frac{1}{2}p^{s+d-1}(p^m-2p^{m-d}+1)(p^m-1)/(p^d-1) $
$ \varepsilon\sqrt{p^*}p^{s+\frac{d-1}{2}} $ $ M_5=\frac{1}{2}p^{3s-2d-1}(p^m-1) $
$ \varepsilon\sqrt{p^*}p^{s+\frac{d-1}{2}}\zeta^j_p $ $ M_{6,\varepsilon}=\frac{1}{2}p^{m-\frac{3d+1}{2}}(p^{s-\frac{d+1}{2}}+\varepsilon\eta'(-j))(p^m-1) $
$ -p^{s+d} $ $ M_7=p^{s-d-1}(p^{s-d}-1)(p^{s-d}-p+1)(p^m-1)/(p^{2d}-1) $
$ -p^{s+d}\zeta^j_p $ $ M_8= p^{s-d-1}(p^{m-2d}-1)(p^m-1)/(p^{2d}-1) $
$ 0 $ $ M_9=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d}+1)(p^m-1) $
$ p^m $ $ 1 $
Table 9.  The value distribution of $ S(a,b,c) $ when $ d' = d $ is even
Value Multiplicity
$ p^s $ $ M_1= \frac{1}{2}p^{s+d-1}(p^s+1)(p^s+p-1)(p^m-1)/(p^d+1) $
$ -p^s $ $ M_2=\frac{1}{2}p^{s+d-1}(p^s-1)(p^s-p+1)(p^m-2p^{m-d}+1)/(p^d-1) $
$ \zeta^j_pp^s $ $ M_3=\frac{1}{2}p^{s+d-1}(p^m-1)^2/(p^d+1) $
$ -\zeta^j_pp^s $ $ M_4=\frac{1}{2}p^{s+d-1}(p^m-2p^{m-d}+1)(p^m-1)/(p^d-1) $
$ \varepsilon p^{s+\frac{d}{2}} $ $ M_{5,\varepsilon}=\frac{1}{2}p^{m-\frac{3d}{2}-1}(p^{s-\frac{d}{2}}+\varepsilon(p-1))(p^m-1) $
$ \varepsilon p^{s+\frac{d}{2}}\zeta^j_p $ $ M_{6,\varepsilon}=\frac{1}{2}p^{m-\frac{3d}{2}-1}(p^{s-\frac{d}{2}}-\varepsilon)(p^m-1) $
$ -p^{s+d} $ $ M_7=p^{s-d-1}(p^{s-d}-1)(p^{s-d}-p+1)(p^m-1)/(p^{2d}-1) $
$ -p^{s+d}\zeta^j_p $ $ M_8= p^{s-d-1}(p^{s-d}-1)(p^{s-d}+1)(p^m-1)/(p^{2d}-1) $
$ 0 $ $ M_9=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d}+1)(p^m-1) $
$ p^m $ $ 1 $
Value Multiplicity
$ p^s $ $ M_1= \frac{1}{2}p^{s+d-1}(p^s+1)(p^s+p-1)(p^m-1)/(p^d+1) $
$ -p^s $ $ M_2=\frac{1}{2}p^{s+d-1}(p^s-1)(p^s-p+1)(p^m-2p^{m-d}+1)/(p^d-1) $
$ \zeta^j_pp^s $ $ M_3=\frac{1}{2}p^{s+d-1}(p^m-1)^2/(p^d+1) $
$ -\zeta^j_pp^s $ $ M_4=\frac{1}{2}p^{s+d-1}(p^m-2p^{m-d}+1)(p^m-1)/(p^d-1) $
$ \varepsilon p^{s+\frac{d}{2}} $ $ M_{5,\varepsilon}=\frac{1}{2}p^{m-\frac{3d}{2}-1}(p^{s-\frac{d}{2}}+\varepsilon(p-1))(p^m-1) $
$ \varepsilon p^{s+\frac{d}{2}}\zeta^j_p $ $ M_{6,\varepsilon}=\frac{1}{2}p^{m-\frac{3d}{2}-1}(p^{s-\frac{d}{2}}-\varepsilon)(p^m-1) $
$ -p^{s+d} $ $ M_7=p^{s-d-1}(p^{s-d}-1)(p^{s-d}-p+1)(p^m-1)/(p^{2d}-1) $
$ -p^{s+d}\zeta^j_p $ $ M_8= p^{s-d-1}(p^{s-d}-1)(p^{s-d}+1)(p^m-1)/(p^{2d}-1) $
$ 0 $ $ M_9=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{m-2d}+1)(p^m-1) $
$ p^m $ $ 1 $
Table 10.  The value distribution of $ S(a,b,c) $ when $ d' = 2d $
Value Multiplicity
$ -p^s $ $ M_1=\frac{p^{s+3d-1}(p^s-1)(p^s-p+1)(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)}{(p^d+1)(p^{2d}-1)} $
$ -\zeta^j_pp^s $ $ M_2=\frac{p^{s+3d-1}(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+d} $ $ M_3=\frac{p^{s-1}(p^{s-d}+p-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+d}\zeta^j_p $ $ M_4=\frac{p^{s-1}(p^{s-d}-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ -p^{s+2d} $ $ M_5=\frac{p^{s-2d-1}(p^{s-d}-1)(p^{s-2d}-p+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ -p^{s+2d}\zeta^j_p $ $ M_6=\frac{p^{s-2d-1}(p^{s-d}-1)(p^{s-2d}+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ 0 $ $ M_7=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{3s-4d}+p^{3s-5d}+p^{m-d}- $
$ 2p^{m-2d}+p^{m-3d}-p^{m-4d}+1)(p^m-1) $
$ p^m $ $ 1 $
Value Multiplicity
$ -p^s $ $ M_1=\frac{p^{s+3d-1}(p^s-1)(p^s-p+1)(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)}{(p^d+1)(p^{2d}-1)} $
$ -\zeta^j_pp^s $ $ M_2=\frac{p^{s+3d-1}(p^m-p^{m-2d}-p^{m-3d}+p^s-p^{s-d}+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ p^{s+d} $ $ M_3=\frac{p^{s-1}(p^{s-d}+p-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ p^{s+d}\zeta^j_p $ $ M_4=\frac{p^{s-1}(p^{s-d}-1)(p^s+p^{s-d}+p^{s-2d}+1)(p^m-1)}{(p^d+1)^2} $
$ -p^{s+2d} $ $ M_5=\frac{p^{s-2d-1}(p^{s-d}-1)(p^{s-2d}-p+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ -p^{s+2d}\zeta^j_p $ $ M_6=\frac{p^{s-2d-1}(p^{s-d}-1)(p^{s-2d}+1)(p^m-1)}{(p^d+1)(p^{2d}-1)} $
$ 0 $ $ M_7=(p^{3s-d}-p^{3s-2d}+p^{3s-3d}-p^{3s-4d}+p^{3s-5d}+p^{m-d}- $
$ 2p^{m-2d}+p^{m-3d}-p^{m-4d}+1)(p^m-1) $
$ p^m $ $ 1 $
[1]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[2]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[3]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[4]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[5]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[6]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[7]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[8]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[9]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[10]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[11]

Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491

[12]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[13]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[14]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[15]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[16]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[17]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[18]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[19]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[20]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

2019 Impact Factor: 0.734

Article outline

Figures and Tables

[Back to Top]