• Previous Article
    On finite length nonbinary sequences with large nonlinear complexity over the residue ring $ \mathbb{Z}_{m} $
  • AMC Home
  • This Issue
  • Next Article
    Infinite families of 2-designs from a class of non-binary Kasami cyclic codes
November  2021, 15(4): 677-699. doi: 10.3934/amc.2020089

Information set decoding in the Lee metric with applications to cryptography

1. 

Faculty of Mathematics and Statistics, University of St. Gallen, Bodanstr. 6, St. Gallen, Switzerland

2. 

Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

* Corresponding author: Violetta Weger

Received  May 2019 Revised  February 2020 Published  November 2021 Early access  July 2020

We convert Stern's information set decoding (ISD) algorithm to the ring $ \mathbb{Z}/4 \mathbb{Z} $ equipped with the Lee metric. Moreover, we set up the general framework for a McEliece and a Niederreiter cryptosystem over this ring. The complexity of the ISD algorithm determines the minimum key size in these cryptosystems for a given security level. We show that using Lee metric codes can substantially decrease the key size, compared to Hamming metric codes. In the end we explain how our results can be generalized to other Galois rings $ \mathbb{Z}/p^s\mathbb{Z} $.

Citation: Anna-Lena Horlemann-Trautmann, Violetta Weger. Information set decoding in the Lee metric with applications to cryptography. Advances in Mathematics of Communications, 2021, 15 (4) : 677-699. doi: 10.3934/amc.2020089
References:
[1]

E. F. Assmus and H. F. Mattson, Error-correcting codes: An axiomatic approach, Information and Control, 6 (1963), 315-330.  doi: 10.1016/S0019-9958(63)80010-8.

[2]

A. Becker, A. Joux, A. May and A. Meurer, Decoding random binary linear codes in $2^{n/20}$: How 1+ 1 = 0 improves information set decoding, Advances in Cryptology–EUROCRYPT 2012, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7237 (2012), 520–536. doi: 10.1007/978-3-642-29011-4_31.

[3]

E. Berlekamp, Algebraic Coding Theory, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. doi: 10.1142/9407.

[4]

D. J. Bernstein, Grover vs. McEliece, In International Workshop on Post-Quantum Cryptography, Lecture Notes in Comput. Sci., Springer, 6061 (2010), 73–80. doi: 10.1007/978-3-642-12929-2_6.

[5]

D. J. Bernstein, T. Lange and C. Peters, Attacking and defending the McEliece cryptosystem, In International Workshop on Post-Quantum Cryptography, Springer, (2008), 31–46. doi: 10.1007/978-3-540-88403-3_3.

[6]

D. J. Bernstein, T. Lange and C. Peters, Smaller decoding exponents: Ball-collision decoding, In Annual Cryptology Conference, Springer, (2011), 743–760. doi: 10.1007/978-3-642-22792-9_42.

[7]

T. Blackford, Cyclic codes over $\mathbb{Z}_4$ of oddly even length, Discrete Applied Mathematics, 128 (2003), 27-46.  doi: 10.1016/S0166-218X(02)00434-1.

[8]

I. F. Blake, Codes over certain rings, Information and Control, 20 (1972), 396-404.  doi: 10.1016/S0019-9958(72)90223-9.

[9]

I. F. Blake, Codes over integer residue rings, Information and Control, 29 (1975), 295-300.  doi: 10.1016/S0019-9958(75)80001-5.

[10]

E. Byrne, Decoding a class of Lee metric codes over a Galois ring, IEEE Transactions on Information Theory, 48 (2002), 966-975.  doi: 10.1109/18.992804.

[11]

A. Canteaut and Hervé Chabanne, A Further Improvement of the Work Factor in an Attempt at Breaking McEliece's Cryptosystem, PhD thesis, INRIA, 1994.

[12]

A. Canteaut and F. Chabaud, A new algorithm for finding minimum-weight words in a linear code: Application to McEliece's cryptosystem and to narrow-sense BCH codes of length 511, IEEE Transactions on Information Theory, 44 (1998), 367-378.  doi: 10.1109/18.651067.

[13]

A. Canteaut and N. Sendrier, Cryptanalysis of the original McEliece cryptosystem, In Advances in Cryptology ASIACRYPT'98 (Beijing), Lecture Notes in Comput. Sci., Springer, Berlin, 1514 (1998), 187–199. doi: 10.1007/3-540-49649-1_16.

[14]

F. Chabaud, Asymptotic analysis of probabilistic algorithms for finding short codewords, Eurocode '92 (Udine, 1992), CISM Courses and Lect., Springer, Vienna, 339 (1993), 175–183.

[15]

J. T. Coffey and R. M. Goodman, The complexity of information set decoding, IEEE Transactions on Information Theory, 36 (1990), 1031-1037.  doi: 10.1109/18.57202.

[16]

I. I. Dumer, Two decoding algorithms for linear codes, Problemy Peredachi Informatsii, 25 (1989), 24-32. 

[17]

T. Etzion, A. Vardy and E. Yaakobi, Dense error-correcting codes in the Lee metric, In IEEE Information Theory Workshop, (2010), 1–5.

[18]

M. Finiasz and N. Sendrier, Security bounds for the design of code-based cryptosystems, In International Conference on the Theory and Application of Cryptology and Information Security, Springer, (2009), 88–105. doi: 10.1007/978-3-642-10366-7_6.

[19]

E. Gabidulin, A brief survey of metrics in coding theory, Mathematics of Distances and Applications, 66 (2012).

[20]

M. Greferath, An introduction to ring-linear coding theory, In Gröbner Bases, Coding, and Cryptography, Springer, (2009), 219–238. doi: 10.1007/978-3-540-93806-4_13.

[21]

R. A. HammonsV. P. KumarR. A. CalderbankN. Sloane and P. Solé, The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Transactions on Information Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.

[22]

T. Helleseth and V. Zinoviev, On $\mathbb{Z}_4$-linear Goethals codes and Kloosterman sums, Designs, Codes and Cryptography, 17 (1999), 269-288.  doi: 10.1023/A:1026491513009.

[23]

S. Hirose, May-Ozerov algorithm for nearest-neighbor problem over $\mathbb{F}_q$ and its application to information set decoding, In International Conference for Information Technology and Communications, Springer, (2016), 115–126.

[24]

C. Interlando, K. Khathuria, N. Rohrer, J. Rosenthal and V. Weger, Generalization of the Ball-Collision algorithm, preprint, arXiv: : 1812.10955, 2018.

[25]

D. S. Krotov, $\mathbb{Z}_4$-linear Hadamard and extended perfect codes, Electron. Notes Discrete Math., Elsevier Sci. B. V., Amsterdam, 6 (2001), 107-112. 

[26]

E. A. Kruk, Decoding complexity bound for linear block codes, Problemy Peredachi Informatsii, 25 (1989), 103-107. 

[27]

P. J. Lee and E. F. Brickell, An observation on the security of McEliece's public-key cryptosystem, In Workshop on the Theory and Application of of Cryptographic Techniques, Springer, 330 (1988), 275–280. doi: 10.1007/3-540-45961-8_25.

[28]

J. S. Leon, A probabilistic algorithm for computing minimum weights of large error-correcting codes, IEEE Transactions on Information Theory, 34 (1988), 1354-1359.  doi: 10.1109/18.21270.

[29]

A. May, A. Meurer and E. Thomae, Decoding random linear codes in $\mathcal{O} (2^{0.054 n})$, In International Conference on the Theory and Application of Cryptology and Information Security, Springer, 2011 (2011), 107–124. doi: 10.1007/978-3-642-25385-0_6.

[30]

A. May and I. Ozerov, On computing nearest neighbors with applications to decoding of binary linear codes, In Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer, (2015), 203–228. doi: 10.1007/978-3-662-46800-5_9.

[31]

R. J. McEliece, A Public-Key Cryptosystem Based on Algebraic Coding Theory, Technical report, DSN Progress report, Jet Propulsion Laboratory, Pasadena, 1978.

[32]

A. Meurer, A Coding-Theoretic Approach to Cryptanalysis, PhD thesis, Ruhr University Bochum, 2012.

[33]

A. A. Nechaev, Kerdock code in a cyclic form, Discrete Mathematics and Applications, 1 (1991), 365-384.  doi: 10.1515/dma.1991.1.4.365.

[34]

R. NiebuhrE. PersichettiPi erre-Louis CayrelS. Bulygin and J. Buchmann, On lower bounds for information set decoding over $\mathbb{F}_q$ and on the effect of partial knowledge, International journal of information and Coding Theory, 4 (2017), 47-78.  doi: 10.1504/IJICOT.2017.081458.

[35]

C. Peters, Information-set decoding for linear codes over $\mathbb{F}_q$, In International Workshop on Post-Quantum Cryptography, Springer, 6061 (2010), 81–94. doi: 10.1007/978-3-642-12929-2_7.

[36]

V. S. Pless and Z. Qian, Cyclic codes and quadratic residue codes over $\mathbb{Z}_4$, IEEE Transactions on Information Theory, 42 (1996), 1594-1600.  doi: 10.1109/18.532906.

[37]

E. Prange, The use of information sets in decoding cyclic codes, IRE Transactions on Information Theory, 8 (1962), 5-9.  doi: 10.1109/tit.1962.1057777.

[38]

R. M. Roth and P. H. Siegel, Lee-metric BCH codes and their application to constrained and partial-response channels, IEEE Transactions on Information Theory, 40 (1994), 1083-1096.  doi: 10.1109/18.335966.

[39]

C. Satyanarayana, Lee metric codes over integer residue rings (corresp), IEEE Transactions on Information Theory, 25 (1979), 250-254.  doi: 10.1109/TIT.1979.1056017.

[40]

P. Shankar, On BCH codes over arbitrary integer rings (corresp), IEEE Transactions on Information Theory, 25 (1979), 480-483.  doi: 10.1109/TIT.1979.1056063.

[41]

E. Spiegel, Codes over $\mathbb{Z}_m$, Information and control, 35 (1977), 48-51.  doi: 10.1016/S0019-9958(77)90526-5.

[42]

J. Stern, A method for finding codewords of small weight, In International Colloquium on Coding Theory and Applications, Springer, 388 (1989), 106–113. doi: 10.1007/BFb0019850.

[43]

I. Tal and R. M. Roth, On list decoding of alternant codes in the Hamming and Lee metrics, In IEEE International Symposium on Information Theory, 2003,364–364.

[44]

H. Tapia-Recillas, A secret sharing scheme from a chain ring linear code, Congressus Numerantium, 186 (2007), 33-39. 

[45]

J. van Tilburg, On the McEliece public-key cryptosystem, In Conference on the Theory and Application of Cryptography, Springer, 403 (1990), 119–131. doi: 10.1007/0-387-34799-2_10.

[46]

V. Weger, M. Battaglioni, P. Santini, F. Chiaraluce, M. Baldi and E. Persichetti, Information set decoding of Lee-metric codes over finite rings, arXiv preprint, arXiv: 2001.08425, 2020.

[47]

Y. Wu and C. N. Hadjicostis, Decoding algorithm and architecture for BCH codes under the Lee metric, IEEE Transactions on Communications, 56 (2008), 2050-2059.  doi: 10.1109/TCOMM.2008.041227.

show all references

References:
[1]

E. F. Assmus and H. F. Mattson, Error-correcting codes: An axiomatic approach, Information and Control, 6 (1963), 315-330.  doi: 10.1016/S0019-9958(63)80010-8.

[2]

A. Becker, A. Joux, A. May and A. Meurer, Decoding random binary linear codes in $2^{n/20}$: How 1+ 1 = 0 improves information set decoding, Advances in Cryptology–EUROCRYPT 2012, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7237 (2012), 520–536. doi: 10.1007/978-3-642-29011-4_31.

[3]

E. Berlekamp, Algebraic Coding Theory, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. doi: 10.1142/9407.

[4]

D. J. Bernstein, Grover vs. McEliece, In International Workshop on Post-Quantum Cryptography, Lecture Notes in Comput. Sci., Springer, 6061 (2010), 73–80. doi: 10.1007/978-3-642-12929-2_6.

[5]

D. J. Bernstein, T. Lange and C. Peters, Attacking and defending the McEliece cryptosystem, In International Workshop on Post-Quantum Cryptography, Springer, (2008), 31–46. doi: 10.1007/978-3-540-88403-3_3.

[6]

D. J. Bernstein, T. Lange and C. Peters, Smaller decoding exponents: Ball-collision decoding, In Annual Cryptology Conference, Springer, (2011), 743–760. doi: 10.1007/978-3-642-22792-9_42.

[7]

T. Blackford, Cyclic codes over $\mathbb{Z}_4$ of oddly even length, Discrete Applied Mathematics, 128 (2003), 27-46.  doi: 10.1016/S0166-218X(02)00434-1.

[8]

I. F. Blake, Codes over certain rings, Information and Control, 20 (1972), 396-404.  doi: 10.1016/S0019-9958(72)90223-9.

[9]

I. F. Blake, Codes over integer residue rings, Information and Control, 29 (1975), 295-300.  doi: 10.1016/S0019-9958(75)80001-5.

[10]

E. Byrne, Decoding a class of Lee metric codes over a Galois ring, IEEE Transactions on Information Theory, 48 (2002), 966-975.  doi: 10.1109/18.992804.

[11]

A. Canteaut and Hervé Chabanne, A Further Improvement of the Work Factor in an Attempt at Breaking McEliece's Cryptosystem, PhD thesis, INRIA, 1994.

[12]

A. Canteaut and F. Chabaud, A new algorithm for finding minimum-weight words in a linear code: Application to McEliece's cryptosystem and to narrow-sense BCH codes of length 511, IEEE Transactions on Information Theory, 44 (1998), 367-378.  doi: 10.1109/18.651067.

[13]

A. Canteaut and N. Sendrier, Cryptanalysis of the original McEliece cryptosystem, In Advances in Cryptology ASIACRYPT'98 (Beijing), Lecture Notes in Comput. Sci., Springer, Berlin, 1514 (1998), 187–199. doi: 10.1007/3-540-49649-1_16.

[14]

F. Chabaud, Asymptotic analysis of probabilistic algorithms for finding short codewords, Eurocode '92 (Udine, 1992), CISM Courses and Lect., Springer, Vienna, 339 (1993), 175–183.

[15]

J. T. Coffey and R. M. Goodman, The complexity of information set decoding, IEEE Transactions on Information Theory, 36 (1990), 1031-1037.  doi: 10.1109/18.57202.

[16]

I. I. Dumer, Two decoding algorithms for linear codes, Problemy Peredachi Informatsii, 25 (1989), 24-32. 

[17]

T. Etzion, A. Vardy and E. Yaakobi, Dense error-correcting codes in the Lee metric, In IEEE Information Theory Workshop, (2010), 1–5.

[18]

M. Finiasz and N. Sendrier, Security bounds for the design of code-based cryptosystems, In International Conference on the Theory and Application of Cryptology and Information Security, Springer, (2009), 88–105. doi: 10.1007/978-3-642-10366-7_6.

[19]

E. Gabidulin, A brief survey of metrics in coding theory, Mathematics of Distances and Applications, 66 (2012).

[20]

M. Greferath, An introduction to ring-linear coding theory, In Gröbner Bases, Coding, and Cryptography, Springer, (2009), 219–238. doi: 10.1007/978-3-540-93806-4_13.

[21]

R. A. HammonsV. P. KumarR. A. CalderbankN. Sloane and P. Solé, The $\mathbb{Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Transactions on Information Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.

[22]

T. Helleseth and V. Zinoviev, On $\mathbb{Z}_4$-linear Goethals codes and Kloosterman sums, Designs, Codes and Cryptography, 17 (1999), 269-288.  doi: 10.1023/A:1026491513009.

[23]

S. Hirose, May-Ozerov algorithm for nearest-neighbor problem over $\mathbb{F}_q$ and its application to information set decoding, In International Conference for Information Technology and Communications, Springer, (2016), 115–126.

[24]

C. Interlando, K. Khathuria, N. Rohrer, J. Rosenthal and V. Weger, Generalization of the Ball-Collision algorithm, preprint, arXiv: : 1812.10955, 2018.

[25]

D. S. Krotov, $\mathbb{Z}_4$-linear Hadamard and extended perfect codes, Electron. Notes Discrete Math., Elsevier Sci. B. V., Amsterdam, 6 (2001), 107-112. 

[26]

E. A. Kruk, Decoding complexity bound for linear block codes, Problemy Peredachi Informatsii, 25 (1989), 103-107. 

[27]

P. J. Lee and E. F. Brickell, An observation on the security of McEliece's public-key cryptosystem, In Workshop on the Theory and Application of of Cryptographic Techniques, Springer, 330 (1988), 275–280. doi: 10.1007/3-540-45961-8_25.

[28]

J. S. Leon, A probabilistic algorithm for computing minimum weights of large error-correcting codes, IEEE Transactions on Information Theory, 34 (1988), 1354-1359.  doi: 10.1109/18.21270.

[29]

A. May, A. Meurer and E. Thomae, Decoding random linear codes in $\mathcal{O} (2^{0.054 n})$, In International Conference on the Theory and Application of Cryptology and Information Security, Springer, 2011 (2011), 107–124. doi: 10.1007/978-3-642-25385-0_6.

[30]

A. May and I. Ozerov, On computing nearest neighbors with applications to decoding of binary linear codes, In Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer, (2015), 203–228. doi: 10.1007/978-3-662-46800-5_9.

[31]

R. J. McEliece, A Public-Key Cryptosystem Based on Algebraic Coding Theory, Technical report, DSN Progress report, Jet Propulsion Laboratory, Pasadena, 1978.

[32]

A. Meurer, A Coding-Theoretic Approach to Cryptanalysis, PhD thesis, Ruhr University Bochum, 2012.

[33]

A. A. Nechaev, Kerdock code in a cyclic form, Discrete Mathematics and Applications, 1 (1991), 365-384.  doi: 10.1515/dma.1991.1.4.365.

[34]

R. NiebuhrE. PersichettiPi erre-Louis CayrelS. Bulygin and J. Buchmann, On lower bounds for information set decoding over $\mathbb{F}_q$ and on the effect of partial knowledge, International journal of information and Coding Theory, 4 (2017), 47-78.  doi: 10.1504/IJICOT.2017.081458.

[35]

C. Peters, Information-set decoding for linear codes over $\mathbb{F}_q$, In International Workshop on Post-Quantum Cryptography, Springer, 6061 (2010), 81–94. doi: 10.1007/978-3-642-12929-2_7.

[36]

V. S. Pless and Z. Qian, Cyclic codes and quadratic residue codes over $\mathbb{Z}_4$, IEEE Transactions on Information Theory, 42 (1996), 1594-1600.  doi: 10.1109/18.532906.

[37]

E. Prange, The use of information sets in decoding cyclic codes, IRE Transactions on Information Theory, 8 (1962), 5-9.  doi: 10.1109/tit.1962.1057777.

[38]

R. M. Roth and P. H. Siegel, Lee-metric BCH codes and their application to constrained and partial-response channels, IEEE Transactions on Information Theory, 40 (1994), 1083-1096.  doi: 10.1109/18.335966.

[39]

C. Satyanarayana, Lee metric codes over integer residue rings (corresp), IEEE Transactions on Information Theory, 25 (1979), 250-254.  doi: 10.1109/TIT.1979.1056017.

[40]

P. Shankar, On BCH codes over arbitrary integer rings (corresp), IEEE Transactions on Information Theory, 25 (1979), 480-483.  doi: 10.1109/TIT.1979.1056063.

[41]

E. Spiegel, Codes over $\mathbb{Z}_m$, Information and control, 35 (1977), 48-51.  doi: 10.1016/S0019-9958(77)90526-5.

[42]

J. Stern, A method for finding codewords of small weight, In International Colloquium on Coding Theory and Applications, Springer, 388 (1989), 106–113. doi: 10.1007/BFb0019850.

[43]

I. Tal and R. M. Roth, On list decoding of alternant codes in the Hamming and Lee metrics, In IEEE International Symposium on Information Theory, 2003,364–364.

[44]

H. Tapia-Recillas, A secret sharing scheme from a chain ring linear code, Congressus Numerantium, 186 (2007), 33-39. 

[45]

J. van Tilburg, On the McEliece public-key cryptosystem, In Conference on the Theory and Application of Cryptography, Springer, 403 (1990), 119–131. doi: 10.1007/0-387-34799-2_10.

[46]

V. Weger, M. Battaglioni, P. Santini, F. Chiaraluce, M. Baldi and E. Persichetti, Information set decoding of Lee-metric codes over finite rings, arXiv preprint, arXiv: 2001.08425, 2020.

[47]

Y. Wu and C. N. Hadjicostis, Decoding algorithm and architecture for BCH codes under the Lee metric, IEEE Transactions on Communications, 56 (2008), 2050-2059.  doi: 10.1109/TCOMM.2008.041227.

Table 1.  Key sizes and security levels (both in bits) for GV-codes over $ \mathbb Z_4 $ with $ n = 150 $ and $ d = 81 $
$ k_1 $ 1 2 3 $ \dots$ 18 19 $ \dots$ 24 25 26
best $ \ell $ 0 0 0 $ \dots$ 0 0 $ \dots$ 0 1 2
best $ v $ 4 4 4 $ \dots$ 3 3 $ \dots$ 2 2 2
key size 5198 5296 5390 $ \dots$ 6110 6160 $ \dots$ 6440 6446 6448
security level 31 31 31 $ \dots$ 27 27 $ \dots$ 28 28 28
$ k_1 $ 1 2 3 $ \dots$ 18 19 $ \dots$ 24 25 26
best $ \ell $ 0 0 0 $ \dots$ 0 0 $ \dots$ 0 1 2
best $ v $ 4 4 4 $ \dots$ 3 3 $ \dots$ 2 2 2
key size 5198 5296 5390 $ \dots$ 6110 6160 $ \dots$ 6440 6446 6448
security level 31 31 31 $ \dots$ 27 27 $ \dots$ 28 28 28
[1]

Min Ye, Alexander Barg. Polar codes for distributed hierarchical source coding. Advances in Mathematics of Communications, 2015, 9 (1) : 87-103. doi: 10.3934/amc.2015.9.87

[2]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[3]

Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55

[4]

Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249

[5]

Alexandre Fotue-Tabue, Edgar Martínez-Moro, J. Thomas Blackford. On polycyclic codes over a finite chain ring. Advances in Mathematics of Communications, 2020, 14 (3) : 455-466. doi: 10.3934/amc.2020028

[6]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[7]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[8]

Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2020, 14 (2) : 319-332. doi: 10.3934/amc.2020023

[9]

Carla Mascia, Giancarlo Rinaldo, Massimiliano Sala. Hilbert quasi-polynomial for order domains and application to coding theory. Advances in Mathematics of Communications, 2018, 12 (2) : 287-301. doi: 10.3934/amc.2018018

[10]

Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035

[11]

Giuseppe Bianchi, Lorenzo Bracciale, Keren Censor-Hillel, Andrea Lincoln, Muriel Médard. The one-out-of-k retrieval problem and linear network coding. Advances in Mathematics of Communications, 2016, 10 (1) : 95-112. doi: 10.3934/amc.2016.10.95

[12]

Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437

[13]

Jie Geng, Huazhang Wu, Patrick Solé. On one-lee weight and two-lee weight $ \mathbb{Z}_2\mathbb{Z}_4[u] $ additive codes and their constructions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021046

[14]

Habibul Islam, Om Prakash, Ram Krishna Verma. New quantum codes from constacyclic codes over the ring $ R_{k,m} $. Advances in Mathematics of Communications, 2022, 16 (1) : 17-35. doi: 10.3934/amc.2020097

[15]

Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275

[16]

Gokhan Calis, O. Ozan Koyluoglu. Architecture-aware coding for distributed storage: Repairable block failure resilient codes. Advances in Mathematics of Communications, 2018, 12 (3) : 465-503. doi: 10.3934/amc.2018028

[17]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 69-81. doi: 10.3934/amc.2010.4.69

[18]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks and Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[19]

Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629

[20]

Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (277)
  • HTML views (598)
  • Cited by (0)

[Back to Top]